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A B S T R A C T

Advanced air mobility is a promising way of metropolitan air transportation. One critical concern that arises
is how to ensure operational safety in high-dense, dynamic, and uncertain airspace environments in real time.
To address this challenge, we seek a probabilistic geofence that bounds system states with high confidence.
To identify the n-dimensional probabilistic geofence for arbitrary unknown uncertainties not limited to
Gaussian ones, we present an online algorithm based on a data-driven approach of kernel density estimator.
Considering the irregular shape of the probabilistic geofence, we formulate an optimization framework of
integer linear programming whose solution determines a zonotope which provides a convex approximation for
the probabilistic geofence. Leveraging this formulation, a heuristic algorithm is developed to find its solution
efficiently without losing notable accuracy. This heuristic algorithm is tested on case studies that demonstrate
it enjoys efficiency, accuracy, near-optimality, and robustness simultaneously.
1. Introduction

1.1. Background and literature review

Given the rapid growth of the unmanned aircraft system (UAS),
the management of the operation of unmanned aerial vehicles (UAVs)
brings a demand for a reliable and effective air traffic control system.
The advanced air mobility (AAM) system, including urban air mobil-
ity (UAM) and UAS traffic management (UTM), serves this purpose.
Various entities around the world, including government, industry, and
academia, are exploring the sector of AAM [1,2]. AAM is expected to
serve the demand of urban air transportation by introducing multiple
electric vertical take-off and landing (eVTOL) aircraft into the limited
airspace environment [3,4].

Collision avoidance is a critical concern when it comes to the
operations of the system [5]. However, there exist uncertainties like
the disturbance of turbulence and GPS noise in the airspace environ-
ment [6,7]. Therefore, how to assure operational safety in the dynamic,
uncertain, and high-dense airspace in real-time leads to a critical chal-
lenge for AAM. Also, the authorization of various eVTOL aircraft will be
beyond the capacity of the system and congest the airspace. To address
these issues, a low-altitude air traffic management system is introduced
for AAM. Geofencing plays a pivotal role in the system, which reserves
airspace volumes and bounds the possible locations of aircraft incor-
porating uncertainties to ensure operational safety [8]. The design of
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geofencing concentrates on identifying a collision-free trajectory based
on geofences. If the identified trajectory does not violate the designed
geofence, then collision avoidance can be guaranteed.

Researchers are faced with many challenges when it comes to
geofencing:

(1) Unboundedness: When uncertainties are unbounded, it may be
impossible to figure out a bounded geofence. However, most real-world
applications need a bounded geofence due to physical limits [9];

(2) Unknown Distributions: Uncertainties are often assumed to obey
Gaussian distributions in most literature. However, in practice, the
uncertainties may be non-Gaussian [10];

(3) Convexity: The geofence computed by most algorithms is ir-
regular or non-convex, which is hard to handle when it comes to the
resolution of collision avoidance for the safe operation of [11];

(4) Efficiency: In order to realize the operation of AAM in real-time,
the geofence must be computed efficiently. However, many algorithms
are computationally expensive [12].

To address the challenges, in what follows, we will review some
related literature, and then introduce the contributions of our paper.
For unbounded uncertainties, it is often impossible to find a bounded
geofence. Instead, in this paper we turn to find a probabilistic geofence
that bounds the states of aircraft with high confidence, which is a more
practical approach [9].
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The previous studies usually make assumptions that the uncertain-
ties obey Gaussian probability distributions, which may be inconsis-
tent with real scenarios [13]. Some researchers fit the non-Gaussian
uncertainties into Gaussian ones, which is inaccurate and may com-
promise the safety requirement [14,15]. Han et al. shows that fitting
non-Gaussian uncertainties into Gaussian ones may find sub-optimal
solutions and it is necessary to consider non-Gaussian uncertainties to
ensure operational safety [10,16]. Data-driven approach is a popular
way using data obtained from experiments for uncertainty quantifica-
tion [17,18]. In this paper, we capture arbitrary unknown uncertainties,
not limited to Gaussian ones, based on the data-driven approach of
kernel density estimator (KDE), and take the level set of KDE as the
probabilistic geofence of the system states. Also, the algorithm of
fast Fourier transform (FFT) is applied to accelerate the evaluation of
probabilistic geofence.

However, taking the level set of KDE as the probabilistic geofence
brings limitations like the irregular shape of the probabilistic geofence
obtained in this way. These limitations refrain from the probabilistic
geofence from real applications. Instead, researchers turn to provide
a convex approximation for the probabilistic geofence. The bounding
box and convex hull are two existing methods that can provide convex
bounds for the geofence [19]. Lew et al. employ a convex hull of sam-
ples to provide convex approximation [20]. Althoff et al. [21] figure
out enclosing hulls as convex approximations. However, what they find
are too conservative to be accurate approximations of the probabilistic
geofence because they lack quantification. The number of facets (also
called hyperfaces) of the convex hull is undetermined and a convex
hull usually has too many facets leading to too many constraints,
which is not convenient for the operations in practice. A bounding
box can encompass data samples with a fixed number of facets but
is more conservative [22]. Wu et al. [11] finds an efficient box ap-
proximation for data-driven probabilistic geofencing, but it does not
apply to higher-dimensional space. In this work, using KDE results, an
integer linear programming (ILP) problem is formulated, the solution
to which determines a zonotope providing an accurate approximation
for the probabilistic geofence in 𝑛-dimensional space. Then, a heuristic
lgorithm is developed to solve the formulated optimization problem
fficiently.

.2. Contributions and organization

This paper is dedicated to providing efficient and accurate con-
ex approximations for the 𝑛-dimensional probabilistic geofence of
ncertain dynamic systems. The major contributions of this work are
ummarized as:

(1) Based on KDE accelerated by FFT, an online algorithm is devel-
ped to effectively capture arbitrary unknown probability distributions
nd to efficiently evaluate the probabilistic geofence of the system
tates. This data-driven algorithm can learn from data online, and thus
either requires a priori information nor relies on strong assumptions.

(2) An optimization problem of ILP is formulated to provide a
onotopic approximation for 𝑛-dimensional probabilistic geofencing.
he ILP problem is formulated not by using data samples directly but
y grid points weighted by KDE results, which makes it tractable. As
pposed to the existing approaches such as bounding box and Gaussian
it, the resulting zonotope is tighter and more accurate, and thus
ontributes to providing a larger feasible planning space for AAM.

(3) A heuristic algorithm is developed to efficiently solve the formu-
ated ILP problem. Compared with the standard algorithm which finds
globally optimal solution to the optimization problem, this heuristic

lgorithm can efficiently find a near-optimal solution, without losing
otable accuracy and robustness.

The rest of this paper is organized as follows. In Section 2, the
roblem with which we are concerned is formally stated. In Section 3,
n algorithm is developed to capture the probabilistic geofence online.
2

n Section 4, an ILP problem is formulated the solution to which
etermines a zonotope providing an accurate approximation for the
robabilistic geofence in 𝑛-dimensional space. In Section 5, a heuristic
lgorithm is developed to solve the ILP problem formulated in the
ast section. In Section 6, case studies are conducted to demonstrate
he feasibility and efficiency of the proposed heuristic algorithm. Last
ut not least, we conclude this paper and make suggestions for future
esearch in Section 7.
Notations: M =

{

1,… ,𝑀
}

indicates the index set of 𝑀 data samples,
=
{

1,… , 𝑁
}

indicates the index set of 𝑁 grid points in each dimen-
ion, and J =

{

(𝑗1,… , 𝑗𝑛) ∶ min(𝑖1, 𝑖′1) ≤ 𝑗1 ≤ max(𝑖1, 𝑖′1),… ,min(𝑖𝑛, 𝑖′𝑛) ≤
𝑗𝑛 ≤ max(𝑖𝑛, 𝑖′𝑛)

}

indicates the index set of all grid points which lie
between one grid point indexed by (𝑖1,… , 𝑖𝑛) and the other grid point
indexed by (𝑖′1,… , 𝑖′𝑛).

2. Problem statement

In this section, we first investigate an uncertain discrete-time dy-
namic system and introduce the concept of probabilistic geofence of
the system. We then present the goal of this paper.

Consider a discrete-time dynamic system of the form

𝒙𝑡+1 = 𝒇
(

𝒙𝑡, 𝒖𝑡,𝜽𝑡,𝒘𝑡
)

, (1)

here 𝒙𝑡 ∈ R𝑛 is the system state at time step 𝑡, 𝒖𝑡 ∈ R𝑚 is the
ontrol input at time step 𝑡, the uncertain parameter 𝜽𝑡 ∈ R𝑝 and the
xternal disturbance 𝒘𝑡 ∈ R𝑞 are two random vectors independent and
dentically distributed across time, whose probability distributions are
nknown (and not necessarily Gaussian). The initial condition 𝒙0 may
e known exactly or subject to an unknown probability distribution.

Collision avoidance is a critical concern when it comes to the
perations of the system. If the uncertainties are unbounded, it is
ften impossible to guarantee that collision can be absolutely avoided.
nstead, given a confidence level 𝛼, we hope to guarantee that the
robability of collision is bounded by the threshold (1 − 𝛼), i.e.,

𝑡, Pr
(

𝑁𝑜
⋁

𝑖=1
‖𝒙𝑡 − 𝒙𝑖𝑡‖ ≤ 𝛿

)

≤ (1 − 𝛼), (2)

here ⋁ represents the logical operator of ‘‘or’’, 𝑁𝑜 is the number of
bstacles, ‖ ⋅ ‖ is Euclidean norm, 𝒙𝑖𝑡 is the state of the 𝑖th obstacle at
ime 𝑡, 𝛿 is the safe separation distance.

Eq. (2) is a chance constraint and we hope to convert it to a de-
erministic constraint equivalently. Since 𝒙𝑡 and 𝒙𝑖𝑡, 𝑖 ∈ {1,… , 𝑁𝑜} are
ubject to unknown uncertainties which may be unbounded, we hope
o find a bounded probabilistic geofence for each of them respectively.
he notion of probabilistic geofence is formally defined as follows.

efinition 1 (Probabilistic Geofence). A bounded set 𝑡 ⊆ R𝑛 is a
robabilistic geofence of the system state 𝒙𝑡 ∈ R𝑛 at time 𝑡 in Eq. (1)
t confidence level 𝛼 if and only if

Pr(𝒙𝑡 ∈ 𝑡) ≥ 𝛼.

Through the introduction of probabilistic geofence, the probabilistic
constraint Eq. (2) can be converted to the following deterministic
constraint

∀𝑡, 𝑡 ∩
𝑁𝑜
⋃

𝑖=1
𝑖𝑡 = ∅,

where ⋃ represents the set operation of ‘‘union’’.
However, the shape of the probabilistic geofence 𝑡 and 𝑖𝑡, 𝑖 ∈

{1,… , 𝑁𝑜} is usually nonconvex and irregular, which refrains it from
real applications. In this paper, we hope to efficiently find a special
type of bounded convex polytopes, termed zonotopes, to provide an
accurate zonotopic approximation for the probabilistic geofence, where
the precise definition of zonotopes will be introduced in Section 4.

Fig. 1 is used to help illustrate the notions like probabilistic ge-

ofence and its zonotopic approximation. In this figure, the black points
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Fig. 1. Diagram of probabilistic geofence and its zonotopic approximation in 2D space.

indicate the data samples drawn from an unknown probability distri-
bution P, the yellow dashed curve indicates the probabilistic geofence,
and the blue solid box indicates the zonotopic approximation of the
probabilistic geofence.

Probabilistic geofencing plays a useful role in the safe operations
of AAM in real-time. For the safe and reliable operations of AAM, in
addition to the stationary obstacles like buildings, for a given vehicle,
all the other vehicles relative to this vehicle can be viewed as moving
obstacles. Thus, the probabilistic geofences can be used to bound
the states of the obstacles with high confidence. If we can compute
probabilistic geofences in real-time and enforce the planned trajectory
does not violate these probabilistic geofences, then we can guarantee
that the probability of collision is bounded by the threshold (1 − 𝛼). In
view of the irregular shape of the probabilistic geofences which is not
convenient in practice, we hope to efficiently find zonotopes to provide
polytopic approximations for the probabilistic geofences.

In summary, the goal of this paper is twofold:
(1) To efficiently and accurately capture an arbitrary unknown

uncertainty based on a data-driven approach and get 𝑛-dimensional
probabilistic geofences of the stochastic system state;

(2) Approximate the probabilistic geofence using a zonotope that
satisfies: (i) Convexity: The zonotope is a bounded convex polytope,
which benefits the convenience of AAM applications; (ii) Efficiency:
The computation of finding the zonotope is tractable, which makes real-
time motion planning of AAM possible; (iii) Accuracy: The probability
of the system state 𝒙𝑡 in the zonotope is close to the confidence
level 𝛼, which brings safety guarantee for the operations of AAM; (iv)
Optimality: The volume of the zonotope is as small as possible (not too
conservative) while ensuring accuracy, which provides a larger feasible
airspace for the safe operations of AAM.

We will come up with our research methodology from Section 3
through Section 5. A framework Fig. 2 is given to aid the readers’
comprehension. The outline of our methodology is summarized as
follows: (1) We obtain 𝑀 data samples and establish 𝑁𝑛 grid points
encompassing these 𝑀 data samples, where 𝑛 is the number of di-
mension; (2) We assign a count to each grid point according to the
distribution of 𝑀 data samples and then we place a kernel function on
each grid point and evaluate KDE values on the mesh 𝑁𝑛 grid points
such that each grid point is weighted by a KDE value; (3) We can
identify the level set of KDE serving as the probabilistic geofence; (4)
Using 𝑁𝑛 grid points weighted by KDE values, we can formulate an ILP
problem whose solution determines a zonotope which approximates the
probabilistic geofence; (5) We develop an algorithm of Heuristic ILP to
efficiently solve the formulated ILP problem.
3

3. Probabilistic geofence identification

In this section, we capture an arbitrary unknown 𝑛-variate proba-
bility distribution through FFT-based KDE and develop an algorithm to
identify a probabilistic geofence of the system state online at confidence
level 𝛼.

3.1. Gaussian fit

In previous research, an unknown 𝑛-variate probability distribution
is often fitted to an 𝑛-variate Gaussian distribution whose probabilistic
geofence is an 𝑛-dimensional ellipsoid.

Consider a collection of 𝑀 data samples 𝒙𝑘 = (𝑥𝑘1, 𝑥𝑘2,… , 𝑥𝑘𝑛) ∈
R𝑛, 𝑘 ∈ M. We can figure out its sample mean vector 𝑿̄ and sample
covariance matrix 𝑺 [23]. If the system state obeys a Gaussian distri-
bution 𝒙 ∼  (𝝁,𝜮) with the mean vector 𝝁 ∈ R𝑛 and the covariance
matrix 𝜮 ∈ R𝑛×𝑛, then 𝑿̄ and 𝑺 of the data samples serve the estimation
of 𝝁 and 𝜮, respectively.

For the Gaussian distribution 𝒙 ∼  (𝝁,𝜮), the quadratic form
(𝒙 − 𝝁)⊤𝜮−1(𝒙 − 𝝁) ∼ 𝜒2

𝑛 , where 𝜒2
𝑛 is a chi-squared distribution with 𝑛

degrees of freedom. Thus, it follows that

Pr
(

(𝒙 − 𝝁)⊤𝜮−1(𝒙 − 𝝁) ≤ 𝐹−1(𝛼)
)

= 𝛼,

where 𝐹−1 is the inverse cumulative density function (CDF) of 𝜒2
𝑛 .

The equation (𝒙−𝝁)⊤𝜮−1(𝒙−𝝁) = 𝐹−1(𝛼) indicates an 𝑛-dimensional
ellipsoid whose center is 𝝁. The length of its 𝑖th principal axis is

2
√

𝐹−1(𝛼)
𝜆𝑖

where 𝜆𝑖 is the 𝑖th eigenvalue of 𝜮−1, and the orientation of
the 𝑖th principal axis aligns with an eigenvector which belongs to 𝜆𝑖 of
𝜮−1. This 𝑛-dimensional ellipsoid can serve as a probabilistic geofence
of the system state at confidence level 𝛼.

3.2. FFT-based KDE

FFT-based KDE is a non-parametric way to capture unknown proba-
bility distributions, accelerated by fast Fourier transform (FFT). In this
subsection, we introduce FFT-based KDE [24,25]. First, the concept of
kernel density estimator is introduced below.

Definition 2 (Kernel Density Estimator (KDE)). Let 𝒙𝑘 ∈ R𝑛, 𝑘 ∈ M be
𝑀 data samples drawn from an 𝑛-variate probability distribution given
by a PDF 𝑓 ∶ R𝑛 ↦ R. The kernel density estimator (KDE) 𝑓 ∶ R𝑛 ↦ R
to approximate the PDF 𝑓 is defined to be

𝑓 (𝒙) = 1
𝑀

𝑀
∑

𝑘=1
𝐾(𝒙 − 𝒙𝑘),

where the function 𝐾 ∶ R𝑛 ↦ R is the kernel function which is a
symmetric 𝑛-variate density function.

The choice of the kernel function 𝐾 is not critical to the accuracy
of KDE [25]. Due to its convenient mathematical properties, a Gaussian
kernel is often used, which is

𝐾(𝒙) = (2𝜋)−
𝑛
2 det(𝑯)−

1
2 exp(−1

2
𝒙⊤𝑯−1𝒙),

where 𝑯 is a symmetric and positive definite bandwidth matrix. The
choice of bandwidth matrix is crucial to the accuracy of KDE approxi-
mating PDF [25]. In this paper, we choose the bandwidth matrix using
Silverman’s rule [24].

Consider a mesh of 𝑁𝑛 grid points
{

(𝑥1𝑖1 ,… , 𝑥𝑛𝑖𝑛 ) ∈ R𝑛 ∶ 𝑖1,… , 𝑖𝑛 ∈
N
}

uniformly spaced on the space R𝑛, the boundary of which encom-
passes all 𝑀 data samples 𝒙𝑘 ∈ R𝑛, 𝑘 ∈ M. The mesh of grid points can
be viewed as a map 𝒈 ∶

{

(𝑖1,… , 𝑖𝑛) ∶ 𝑖1,… , 𝑖𝑛 ∈ N
}

↦
{

(𝑥1𝑖1 ,… , 𝑥𝑛𝑖𝑛 ) ∈
R𝑛 ∶ 𝑖1,… , 𝑖𝑛 ∈ N

}

given by

(𝑥 ,… , 𝑥 ) = 𝒈(𝑖 ,… , 𝑖 ), 𝑖 ,… , 𝑖 ∈ N, (3)
1𝑖1 𝑛𝑖𝑛 1 𝑛 1 𝑛
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Fig. 2. Framework of research methodology.
where (𝑖1,… , 𝑖𝑛) is the index of a grid point whose coordinate is
(𝑥1𝑖1 ,… , 𝑥𝑛𝑖𝑛 ). Throughout the rest of this paper, a coordinate 𝒈(𝑖1,… ,
𝑖𝑛) is abbreviated as 𝒈𝑖1⋯𝑖𝑛 .

The KDE 𝑓 given in Definition 2 can be evaluated on the mesh of
𝑁𝑛 grid points 𝒈 in Eq. (3), which yields

𝑓𝑖1⋯𝑖𝑛 = 𝑓 (𝒈𝑖1⋯𝑖𝑛 ) =
1
𝑀

𝑀
∑

𝑘=1
𝐾(𝒈𝑖1⋯𝑖𝑛 − 𝒙𝑘),

𝑖1,… , 𝑖𝑛 ∈ N.

One way to significantly accelerate the evaluation of KDE is linear
binning [25]. Instead of placing the kernel functions 𝐾 on 𝑀 data
samples, we can place them on 𝑁𝑛 grid points 𝒈 weighted by grid
counts 𝑐𝑢1⋯𝑢𝑛 , 𝑢1,… , 𝑢𝑛 ∈ N. A grid count 𝑐𝑢1⋯𝑢𝑛 is a weight chosen
to represent the amount of data samples near a grid point 𝒈𝑢1⋯𝑢𝑛 . To
obtain 𝑐𝑢1⋯𝑢𝑛 , we can go through every data sample and assign weights
to its neighboring grid points.

Using the strategy of linear binning, the binned KDE 𝑓 ∶ R𝑛 ↦ R to
approximate the KDE 𝑓 in Definition 2 is given by

𝑓 (𝒙) = 1
𝑀

𝑁
∑

𝑢1 ,…,𝑢𝑛=1
𝐾(𝒙 − 𝒈𝑢1⋯𝑢𝑛 )𝑐𝑢1⋯𝑢𝑛 , (4)

where 𝑐𝑢1⋯𝑢𝑛 is the grid count of the grid point 𝒈𝑢1⋯𝑢𝑛 indexed by
(𝑢1,… , 𝑢𝑛).

Evaluating the binned KDE 𝑓 in Eq. (4) on the mesh of 𝑁𝑛 grid
points 𝒈 yields

𝑓𝑖1⋯𝑖𝑛 = 𝑓 (𝒈𝑖1⋯𝑖𝑛 ) =
1
𝑀

𝑁
∑

𝑢1 ,…,𝑢𝑛=1
𝐾(𝒈𝑖1⋯𝑖𝑛 − 𝒈𝑢1⋯𝑢𝑛 )𝑐𝑢1⋯𝑢𝑛 ,

𝑖1,… , 𝑖𝑛 ∈ N.

(5)

Let 𝒇̃ be the vector consisting of 𝑓𝑖1⋯𝑖𝑛 , 𝑖1,… , 𝑖𝑛 ∈ N, 𝒄 be the vector
of 𝑐𝑢1⋯𝑢𝑛 , 𝑢1,… , 𝑢𝑛 ∈ N, and 𝒌 be the vector of 𝐾(𝒈𝑢1⋯𝑢𝑛 ), 𝑢1,… , 𝑢𝑛 ∈ N.
Then, Eq. (5) indicates that 𝒇̃ is the discrete convolution of 𝒄 and 𝒌.
The discrete convolution can be computed by FFT, which significantly
saves computational time. Let 𝑪 and 𝑲 be FFT of 𝒄 and 𝒌, and 𝑭̃
be the element-wise product of 𝑪 and 𝑲. From the results of the
inverse FFT of 𝑭̃ , we can acquire 𝒇̃ . Thus, using FFT, we can efficiently
figure out the binned KDE 𝑓𝑖1⋯𝑖𝑛 , 𝑖1,… , 𝑖𝑛 ∈ N in Eq. (5) which can
approximate the PDF 𝑓 of an arbitrary unknown 𝑛-variate probability
distribution [26,27].

We refer to the way of evaluating the binned KDE using FFT as
FFT-based KDE. The computation of binned KDE given by Eq. (5) is
equivalent to the computation of a discrete convolution, and FFT-based
KDE and direct computation are just two different ways to compute the
same discrete convolution. According to the convolution theorem, the
results of two different ways are exactly the same. However, in practice,
there may be a minor difference between the result of FFT-based KDE
and binned KDE due to numerical errors, which has already been well
discussed in [25,27].

3.3. Probabilistic geofence identification algorithm

We propose an efficient data-driven algorithm using FFT-based
KDE to capture the probabilistic geofence at confidence level 𝛼 of
an unknown stationary uncertainty which obeys an 𝑛-variate proba-
bility distribution 𝑓 whose data samples are gradually observed. See
Algorithm 1.
4

In Algorithm 1, the symbol 𝜀 represents the tolerance of confidence
error. From Lines 9 through 16, FFT is introduced to speed up com-
puting the discrete convolution of 𝒄 and 𝒌 to obtain the binned KDE 𝒇̃
evaluated on the mesh of 𝑁𝑛 grid points 𝒈 which aligns with the axes
of the coordinate system. From Lines 17 through 32, a bisection search
is implemented to find the critical binned KDE value 𝐶kde at which the
confidence level 𝛼 is achieved. The level set of the KDE corresponding
to 𝐶kde is the probabilistic geofence that we aim to find. Note that the
shape of a probabilistic geofence obtained in this way is often irregular,
which precludes its use in subsequent applications requiring an optimal
design. This will be solved in the next section.

As the number of the collected data samples increases, KDE cap-
tured from those data samples will be convergent to the true PDF of
the unknown uncertainties [25]. In practice, the information about
uncertainty is changing over time and the distribution captured by
the algorithm is also updated with more data samples coming in. As
the number of the collected data samples increases, KDE captured
from those data samples will be convergent to the true PDF of the
unknown uncertainties [25]. However, this poses a great challenge
requiring that the proposed algorithm must run in real-time to perform
re-computation every time newly observed data samples are added. Our
proposed algorithm can handle this concern very well, which we will
see in Section 6.5.

4. ILP formulation

In this section, we formulate an ILP optimization problem whose so-
lution is a zonotope serving a convex approximation of the probabilistic
geofence obtained in Algorithm 1.

4.1. Zonotope definition

A zonotope is a convex polytope that is the Minkowski sum of a
finite set of vectors. The precise concept of zonotope is introduced as
follows [21,28,29].

Definition 3 (Zonotope). A zonotope 𝑍 generated by vectors 𝒛̄, 𝒗1,… , 𝒗𝑘
∈ R𝑛 is a set of points in 𝑛-dimensional space

𝑍 =
{

𝑎1𝒗1 +⋯ + 𝑎𝑘𝒗𝑘 + 𝒛̄ ∈ R𝑛 ∶ ∀𝑖 ∈ {1,… , 𝑘}, 𝑎𝑖 ∈ [0, 1]
}

, (6)

where 𝒛̄ describes translation and 𝒗1,… , 𝒗𝑘 are termed generators. Each
𝑎𝑖 is a scalar between 0 and 1.

A zonotope is a bounded simply connected convex set. The use
of zonotopes is motivated by the fact that they are closed under the
operations of Minkowski addition and linear transformation [30,31].

Denoting [𝒗1,… , 𝒗𝑘] by a matrix 𝑮 and (𝑎1,… , 𝑎𝑘) by a vector 𝒂,
then Eq. (6) can be rewritten in a compact form

𝑍 =
{

𝑮𝒂 + 𝒛̄ ∈ R𝑛 ∶ ∀𝑖 ∈ {1,… , 𝑘}, 𝒂[𝑖] ∈ [0, 1]
}

. (7)

In the special case where 𝑘 ≥ 𝑛 and rank(𝑮) = 𝑛, then the zonotope
𝑍 is termed a full-dimensional zonotope; In the special case where 𝑘 ≤ 𝑛,
the zonotope 𝑍 is a (possibly degenerate) parallelotope. In this paper,
we consider the zonotopes that satisfy rank(𝑮) = 𝑛 = 𝑘.

Next, the following lemma shows that a zonotope is closed under
the operation of an affine transformation.

Lemma 1. Given a zonotope 𝑍 and an affine transformation 𝑻 ∶ 𝒙 ↦
𝑨𝒙+𝒃,𝑨 ∈ R𝑛×𝑛, then the affine transformation 𝑻 (𝑍) of the zonotope 𝑍 is
still a zonotope. Further, if for 𝑍 its rank(𝑮) = 𝑛 = 𝑘 and for 𝑻 its matrix
𝑨 is invertible, then for 𝑻 (𝑍) its rank(𝑮′) = 𝑛 = 𝑘.
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Algorithm 1 Probabilistic Geofence Identification Algorithm
1: function Sampling(𝑀)
2: Obtain 𝑀 samples 𝒙𝑘, 𝑘 ∈ M
3: return 𝒙𝑘

4: function Mesh(𝒙𝑘, 𝑁)
5: Get 𝑥1min, 𝑥1max,⋯ , 𝑥𝑛min, 𝑥𝑛max from

data samples 𝒙𝑘
6: 𝒉1 = linspace(𝑥1min, 𝑥1max, 𝑁), ⋯,

𝒉𝑛 = linspace(𝑥𝑛min, 𝑥𝑛max, 𝑁)
7: 𝒈 = Cartesian product of 𝒉1,⋯ ,𝒉𝑛
8: return 𝒈

9: function KDE(𝒙𝑘, 𝒈)
10: Get grid counts 𝒄 for grid points 𝒈 according to 𝒙𝑘
11: Get kernel function values 𝒌 evaluated on 𝒈
12: Get FFT result 𝑪 of 𝒄
13: Get FFT result 𝑲 of 𝒌
14: Get the element-wise product 𝑭 of 𝑪 and 𝑲
15: Get the inverse FFT result 𝒇̃ of 𝑭
16: return 𝒇̃

17: function Bisec(𝒇̃ , 𝛼, 𝜀)
18: 𝑙 = min(𝒇̃ )
19: 𝑢 = max(𝒇̃ )
20: while 𝑙 < 𝑢 do
21: 𝑚 = 1∕2(𝑙 + 𝑢)
22: 𝒛bin = (𝒇̃ ≥ 𝑚) ⋅ 1
23: 𝒛mix = element-wise product of 𝒛bin and 𝒇̃
24: 𝑝 =

∑

𝒛mix∕
∑

𝒇̃
25: if |𝑝 − 𝛼| ≤ 𝜀 then
26: 𝐶kde = 𝑚
27: return 𝒛bin, 𝐶kde

28: else if 𝑝 < 𝛼 then
29: 𝑢 = 𝑚
30: else
31: 𝑙 = 𝑚
32: return 𝐹𝑎𝑖𝑙

33: function ProbGeo(𝑀 , 𝑁 , 𝛼, 𝜀)
34: 𝒙𝑘 = Sampling(𝑀)
35: 𝒈 = Mesh(𝒙𝑘, 𝑁)
36: 𝒇̃ = KDE(𝒙𝑘, 𝒈)
37: 𝒛bin, 𝐶kde = Bisec(𝒇̃ , 𝛼, 𝜀)
38: return 𝒈, 𝒇̃ , 𝒛bin, 𝐶kde

39: ProbGeo(𝑀 , 𝑁 , 𝛼, 𝜀)

Proof. The affine transformation 𝑻 (𝑍) of the zonotope 𝑍 is

𝑻 (𝑍) =
{

𝑨𝒙 + 𝒃 ∈ R𝑛 ∶ 𝒙 ∈ 𝑍
}

=
{

𝑮′𝒂 + 𝒛̄′ ∈ R𝑛 ∶ ∀𝑖 ∈ {1,… , 𝑘}𝒂[𝑖] ∈ [0, 1]
}

,
(8)

here 𝑮′ = 𝑨𝑮 and 𝒛̄′ = 𝑨𝒛̄+𝒃. According to the definition of zonotope
n Eq. (7), 𝑻 (𝑍) is a zonotope. Further, if rank(𝑮) = 𝑛 = 𝑘 and 𝑨 is
nvertible which means rank(𝑨) = 𝑛 = 𝑘, then rank(𝑮′) = rank(𝑨𝑮) =
= 𝑘. Further, assume that rank(𝑮) = 𝑛 = 𝑘 and rank(𝑨) = 𝑛 which
eans 𝑨 is invertible. Since 𝑛 = 𝑘, the matrix 𝑮 ∈ R𝑛×𝑘 and 𝑨 ∈ R𝑛×𝑛

re square matrices. In addition, since rank(𝑮) = 𝑛 and rank(𝑨) = 𝑛,
hen 𝑮 and 𝑨 are full-rank square matrices. Since the product of two
ull-rank square matrices is still a full-rank square matrix, 𝑮′ = 𝑨𝑮 is
n 𝑛 × 𝑛 full-rank square matrix and therefore rank(𝑮′) = 𝑛 = 𝑘. ■
5

.2. ILP formulation of axis-aligned zonotope

Consider 𝑀 data samples 𝒙𝑘 = (𝑥𝑘1,… , 𝑥𝑘𝑛) ∈ R𝑛, 𝑘 ∈ M of a
random vector 𝒙 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛 and a mesh of 𝑁𝑛 grid points
𝒈 aligning with the axes of the coordinate system. Evaluating Eq. (5)
through the implementation of Algorithm 1, it follows that each grid
point 𝒈𝑖1⋯𝑖𝑛 , 𝑖1,… , 𝑖𝑛 ∈ N has a binned KDE value 𝑓𝑖1⋯𝑖𝑛 , 𝑖1,… , 𝑖𝑛 ∈ N,
respectively. We define a normalized weight matrix 𝒘 = [𝑤𝑖1⋯𝑖𝑛 ] whose
lement is

𝑖1⋯𝑖𝑛 =
𝑓𝑖1⋯𝑖𝑛

∑𝑁
𝑖1 ,…,𝑖𝑛=1

𝑓𝑖1⋯𝑖𝑛

, 𝑖1,… , 𝑖𝑛 ∈ N, (9)

which satisfies

0 ≤ 𝑤𝑖1⋯𝑖𝑛 ≤ 1,
𝑁
∑

𝑖1 ,…,𝑖𝑛=1
𝑤𝑖1⋯𝑖𝑛 = 1.

Instead of using 𝑀 data samples 𝒙𝑘 directly, we will formulate the
ILP optimization problem using the grid points 𝒈 with corresponding
normalized weights 𝒘 obtained in Eq. (9). This reduces the number of
constraints and variables, and thus contributes to the feasibility and
tractability of solving the ILP problem.

The ILP optimization problem is formulated to find an optimal
zonotope, which serves as a convex approximation of the probabilistic
geofence. The zonotope can be determined by the selection of grid
points to be covered. To this end, we introduce decision variables
𝑧𝑖1⋯𝑖𝑛 ∈ {0, 1}, 𝑖1,… , 𝑖𝑛 ∈ N. If a grid point 𝒈𝑖1⋯𝑖𝑛 is selected to be
covered by the zonotope, then 𝑧𝑖1⋯𝑖𝑛 = 1; otherwise, 𝑧𝑖1⋯𝑖𝑛 = 0.

To get the smallest zonotope by area, the objective function of the
ILP optimization problem can be formulated as min

∑𝑁
𝑖1 ,…,𝑖𝑛=1

𝑧𝑖1⋯𝑖𝑛 .
The grid point whose weight is the greatest is selected to be covered

by the zonotope, which means

𝑧𝑖1⋯𝑖𝑛 = 1, (10)

where 𝑖1,… , 𝑖𝑛 = argmax𝑖1 ,…,𝑖𝑛 (𝑤𝑖1⋯𝑖𝑛 ).
In order to provide an approximation for the probabilistic geofence

at confidence level 𝛼, we should enforce that the sum of the weights of
the selected grid points exceeds 𝛼. That is,

𝑁
∑

𝑖1 ,…,𝑖𝑛=1
𝑤𝑖1⋯𝑖𝑛𝑧𝑖1⋯𝑖𝑛 ≥ 𝛼. (11)

To make the approximation of the probabilistic geofence zonotopic,
we can enforce that

(𝑧𝑖1⋯𝑖𝑛 ∧ 𝑧𝑖′1⋯𝑖′𝑛 ) ⟹ 𝑧𝑗1⋯𝑗𝑛 , (12)

where min(𝑖1, 𝑖′1) ≤ 𝑗1 ≤ max(𝑖1, 𝑖′1),… ,min(𝑖𝑛, 𝑖′𝑛) ≤ 𝑗𝑛 ≤ max(𝑖𝑛, 𝑖′𝑛).
It implies that if any two grid points 𝒈𝑖1⋯𝑖𝑛 and 𝒈𝑖′1⋯𝑖′𝑛 are selected,
then each grid point 𝒈𝑗1⋯𝑗𝑛 between those two grid points must also
be selected.

Eq. (12) can be rewritten in a conjunctive normal form

¬𝑧𝑖1⋯𝑖𝑛 ∨ ¬𝑧𝑖′1⋯𝑖′𝑛 ∨ 𝑧𝑗1⋯𝑗𝑛 ,

which can be converted to the linear constraints

(1 − 𝑧𝑖1⋯𝑖𝑛 ) + (1 − 𝑧𝑖′1⋯𝑖′𝑛 ) + 𝑧𝑗1⋯𝑗𝑛 ≥ 1,

or equivalently,

𝑧𝑖1⋯𝑖𝑛 + 𝑧𝑖′1⋯𝑖′𝑛 − 𝑧𝑗1⋯𝑗𝑛 ≤ 1, (13)

where min(𝑖1, 𝑖′1) ≤ 𝑗1 ≤ max(𝑖1, 𝑖′1),… ,min(𝑖𝑛, 𝑖′𝑛) ≤ 𝑗𝑛 ≤ max(𝑖𝑛, 𝑖′𝑛).
Let J denote the set of

{

(𝑗1,… , 𝑗𝑛) ∶ min(𝑖1, 𝑖′1) ≤ 𝑗1 ≤ max(𝑖1, 𝑖′1),… ,
′ ′ }
min(𝑖𝑛, 𝑖𝑛) ≤ 𝑗𝑛 ≤ max(𝑖𝑛, 𝑖𝑛) . Collecting the constraints Eqs. (10), (11),
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and (13), we can formally formulate the optimization framework as an
ILP problem

min
𝑁
∑

𝑖1 ,…,𝑖𝑛=1
𝑧𝑖1⋯𝑖𝑛

s.t. 𝑧𝑖1⋯𝑖𝑛 + 𝑧𝑖′1⋯𝑖′𝑛 − 𝑧𝑗1⋯𝑗𝑛 ≤ 1 𝑖1, 𝑖
′
1,… , 𝑖𝑛, 𝑖

′
𝑛 ∈ N,

(𝑗1,… , 𝑗𝑛) ∈ J;

𝑧𝑖1⋯𝑖𝑛 = 1;
𝑁
∑

𝑖1 ,…,𝑖𝑛=1
𝑤𝑖1⋯𝑖𝑛𝑧𝑖1⋯𝑖𝑛 ≥ 𝛼;

𝑧𝑖1⋯𝑖𝑛 ∈ {0, 1} 𝑖1,… , 𝑖𝑛 ∈ N.

(14)

Following the definition of zonotope in Eq. (6), we can find that the
olution to the ILP optimization problem above determines a zonotope

in 𝑛-dimensional space, which is given by

=
{

𝑎1𝒗1 +⋯ + 𝑎𝑘𝒗𝑘 + 𝒛̄ ∈ R𝑛 ∶ ∀𝑖 ∈ {1,… , 𝑘}, 𝑎𝑖 ∈ [0, 1]
}

, (15)

here
𝒛̄ = 𝒈𝑖1min𝑖2min⋯𝑖𝑛min

,

1 = 𝒈𝑖1max𝑖2min⋯𝑖𝑛min
− 𝒈𝑖1min𝑖2min⋯𝑖𝑛min

,

2 = 𝒈𝑖1min𝑖2max⋯𝑖𝑛min
− 𝒈𝑖1min𝑖2min⋯𝑖𝑛min

,

⋮

𝒗𝑛 = 𝒈𝑖1min𝑖2min⋯𝑖𝑛max
− 𝒈𝑖1min𝑖2min⋯𝑖𝑛min

,

nd

1min = min
(

{𝑖1 ∶ 𝑧𝑖1⋯𝑖𝑛 = 1}
)

, 𝑖1max = max({𝑖1 ∶ 𝑧𝑖1⋯𝑖𝑛 = 1}),

2min = min
(

{𝑖2 ∶ 𝑧𝑖1⋯𝑖𝑛 = 1}
)

, 𝑖2max = max({𝑖2 ∶ 𝑧𝑖1⋯𝑖𝑛 = 1}),

⋮ ⋮

𝑖𝑛min = min
(

{𝑖𝑛 ∶ 𝑧𝑖1⋯𝑖𝑛 = 1}
)

, 𝑖𝑛max = max({𝑖𝑛 ∶ 𝑧𝑖1⋯𝑖𝑛 = 1}).

lso, this 𝑛-dimensional zonotope 𝑍 satisfies rank(𝑮) = 𝑛 = 𝑘 where 𝑮
s defined in Eq. (7).

The zonotope obtained in this way must align with the axes of the
oordinate system. Indeed, the directions of the generators 𝒗1,… , 𝒗𝑘 ∈
𝑛 of a zonotope should be arbitrary. Thus, we hope that the orientation
f the zonotope can be customized. This will be fully discussed in the
ext subsection.

.3. ILP formulation of oriented zonotope

In this subsection, not limited to axis-aligned zonotopes, we find
n oriented zonotope aligning with the principal axes of a collec-
ion of data samples, which provides a convex approximation for the
robabilistic geofence.

Consider a random vector 𝒙 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛 obeying an
nknown 𝑛-variate probability distribution with 𝑀 data samples 𝒙𝑘 =
𝑥𝑘1, 𝑥𝑘2,… , 𝑥𝑘𝑛) ∈ R𝑛, 𝑘 ∈ M drawn from the distribution. Let
1,… , 𝒆𝑛 ∈ R𝑛 be 𝑛 linear independent unit vectors which represent
he orientation of the principal axes of those 𝑀 data samples. Since
1,… , 𝒆𝑛 ∈ R𝑛 are linearly independent vectors, we can define a
ew random vector 𝒖 = (𝑢1,… , 𝑢𝑛) ∈ R𝑛 given by a bijective affine
ransformation of 𝒙 = (𝑥1,… , 𝑥𝑛), which is

= 𝑻 (𝒙) = 𝑨(𝒙 − 𝒙̄) + 𝒙̄, 𝒙 ∈ R𝑛, (16)

here 𝑨 = [𝒆1,… , 𝒆𝑛]−1 is an invertible matrix. The point 𝒙̄ =
𝑥̄1,… , 𝑥̄𝑛) = 1

𝑀
∑𝑀

𝑘=1 𝒙𝑘 = 1
𝑀

∑𝑀
𝑘=1(𝑥𝑘1,… , 𝑥𝑘𝑛) is a fixed point such

that 𝑻 (𝒆𝑖) = (𝛿𝑖1,… , 𝛿𝑖𝑛), 𝑖 ∈ {1,… , 𝑛} where 𝛿𝑖𝑗 is Kronecker delta. The
inverse transformation of 𝑻 is therefore

𝒙 = 𝑻 −1(𝒖) = 𝑨−1(𝒖 − 𝒙̄) + 𝒙̄, 𝒖 ∈ R𝑛,

here 𝑨−1 = [𝒆 ,… , 𝒆 ] is the inverse matrix of 𝑨.
6

1 𝑛
Given the PDF of an original probability distribution, the PDF of
another probability distribution which is the transformation of the
original probability distribution can be obtained through the following
Lemma 2 [32].

Lemma 2. Let 𝒙 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛 be a random vector with a joint PDF
𝑓𝒙(𝑥1,… , 𝑥𝑛), and 𝒖 = (𝑢1,… , 𝑢𝑛) ∈ R𝑛 be another random vector which
is the transformation of 𝒙 = (𝑥1,… , 𝑥𝑛), which is

𝒖 = 𝑻 (𝒙) ∶
⎧

⎪

⎨

⎪

⎩

𝑢1 = 𝑔1(𝑥1,… , 𝑥𝑛)
⋮

𝑢𝑛 = 𝑔𝑛(𝑥1,… , 𝑥𝑛).

If (1) the functions 𝑔1,… , 𝑔𝑛 have continuous first partial derivatives; (2)
The transformation 𝑻 is bijective and thus has a unique inverse transforma-
tion

𝒙 = 𝑻 −1(𝒖) ∶
⎧

⎪

⎨

⎪

⎩

𝑥1 = ℎ1(𝑢1,… , 𝑢𝑛)
⋮

𝑥𝑛 = ℎ𝑛(𝑢1,… , 𝑢𝑛);

(3) The Jacobian determinant 𝐽 associated with 𝑻 −1 satisfies

∀𝑢1,… , 𝑢𝑛, 𝐽 (𝑢1,… , 𝑢𝑛) =
𝜕(𝑥1,… , 𝑥𝑛)
𝜕(𝑢1,… , 𝑢𝑛)

≠ 0,

then the joint PDF of 𝒖 = (𝑢1,… , 𝑢𝑛) is

𝑓𝒖(𝑢1,… , 𝑢𝑛) =𝑓𝒙
(

𝑥1(𝑢1,… , 𝑢𝑛),… , 𝑥𝑛(𝑢1,… , 𝑢𝑛)
)

|𝐽 (𝑢1,… , 𝑢𝑛)|,

where |𝐽 (𝑢1,… , 𝑢𝑛)| is the absolute value of 𝐽 (𝑢1,… , 𝑢𝑛).

According to Lemma 2, given the joint PDF 𝑓𝒙(𝒙) of the random vec-
tor 𝒙 = (𝑥1,… , 𝑥𝑛) ∈ R𝑛, then the joint PDF 𝑓𝒖(𝒖) of the random vector
𝒖 = (𝑢1,… , 𝑢𝑛) = 𝑻 (𝒙), where 𝑻 is a bijective affine transformation
defined in Eq. (16), is given by

𝑓𝒖(𝒖) = 𝑓𝒙
(

𝑻 −1(𝒖)
)

| det(𝑨−1)|. (17)

Given a mesh of 𝑁𝑛 grid points 𝒈𝒙 aligning with the principal axes
𝒆1,… , 𝒆𝑛 ∈ R𝑛 of 𝑀 data samples 𝒙𝑘 = (𝑥𝑘1, 𝑥𝑘2,… , 𝑥𝑘𝑛) ∈ R𝑛, 𝑘 ∈ M,
i.e.,

(𝑥1𝑖1 ,… , 𝑥𝑛𝑖𝑛 ) = 𝒈𝒙𝑖1⋯𝑖𝑛 , 𝑖1,… , 𝑖𝑛 ∈ N,

then a new mesh of 𝑁𝑛 grid points 𝒈𝒖 = 𝑻 ◦𝒈𝒙, aligning with the axes
of the coordinate system, can be defined as the composition of 𝑻 and
𝒈𝒙, i.e.,

(𝑢1𝑖1 ,… , 𝑢𝑛𝑖𝑛 ) = 𝒈𝒖𝑖1⋯𝑖𝑛 = 𝑻
(

𝒈𝒙𝑖1⋯𝑖𝑛

)

,

𝑖1,… , 𝑖𝑛 ∈ N,

where 𝒈𝒙𝑖1⋯𝑖𝑛 = 𝒈𝒙(𝑖1,… , 𝑖𝑛) and 𝒈𝒖𝑖1⋯𝑖𝑛 = 𝒈𝒖(𝑖1,… , 𝑖𝑛).
According to Eq. (17), the connection between the PDF 𝑓𝒙(𝒙) eval-

uated on the grid points 𝒈𝒙 and the PDF 𝑓𝒖(𝒖) on the grid points 𝒈𝒖 is

𝑓𝒖𝑖1⋯𝑖𝑛 = 𝑓𝒙𝑖1⋯𝑖𝑛 | det(𝑨
−1)|, 𝑖1,… , 𝑖𝑛 ∈ N, (18)

where 𝑓𝒖𝑖1⋯𝑖𝑛 = 𝑓𝒖
(

𝒈𝒖(𝑖1,… , 𝑖𝑛)
)

and 𝑓𝒙𝑖1⋯𝑖𝑛 = 𝑓𝒙
(

𝒈𝒙(𝑖1,… , 𝑖𝑛)
)

.
Given 𝑀 original data samples 𝒙𝑘 = (𝑥𝑘1,… , 𝑥𝑘𝑛) ∈ R𝑛, 𝑘 ∈ M

of a random vector 𝒙 = (𝑥1,… , 𝑥𝑛) with 𝑁𝑛 oriented grid points 𝒈𝒙,
we can always transform it to the data samples of another random
vector 𝒖 = (𝑥1,… , 𝑥𝑛) = 𝑻 (𝒙) where 𝑻 is defined in Eq. (16) with 𝑁𝑛

axis-aligned grid points 𝒈𝒖 = 𝑻 ◦𝒈𝒙.
Through the implementation of Algorithm 1, we can obtain the KDE

values 𝑓𝒖 evaluated on the axis-aligned grid points 𝒈𝒖, which estimates
the PDF 𝑓𝒖 for the random vector 𝒖. Then according to Eq. (18), the
KDE 𝑓𝒙 of the random vector 𝒙 = 𝑻 −1(𝒖) evaluated on the oriented
grid points 𝒈𝒙, which estimates its PDF 𝑓𝒙, is given by

𝑓𝒙𝑖1⋯𝑖𝑛 = 𝑓𝒖𝑖1⋯𝑖𝑛 | det(𝑨
−1)|−1, 𝑖1,… , 𝑖𝑛 ∈ N, (19)

where 𝑓 = 𝑓
(

𝒈 (𝑖 ,… , 𝑖 )
)

and 𝑓 = 𝑓
(

𝒈 (𝑖 ,… , 𝑖 )
)

.
𝒖𝑖1⋯𝑖𝑛 𝒖 𝒖 1 𝑛 𝒙𝑖1⋯𝑖𝑛 𝒙 𝒙 1 𝑛
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Fig. 3. Diagram of finding oriented zonotope in 2D space.
Given KDE values 𝑓𝒙 amd 𝑓𝒖, we can define a normalized weight
matrix 𝒘𝒙 = [𝑤𝒙𝑖1⋯𝑖𝑛 ] for 𝒙 whose element is

𝑤𝒙𝑖1⋯𝑖𝑛 =
𝑓𝒙𝑖1⋯𝑖𝑛

∑𝑁
𝑖1 ,…,𝑖𝑛=1

𝑓𝒙𝑖1⋯𝑖𝑛

, 𝑖1,… , 𝑖𝑛 ∈ N,

and 𝒘𝒖 = [𝑤𝒖𝑖1⋯𝑖𝑛 ] for 𝒖 whose element is

𝑤𝒖𝑖1⋯𝑖𝑛 =
𝑓𝒖𝑖1⋯𝑖𝑛

∑𝑁
𝑖1 ,…,𝑖𝑛=1

𝑓𝒖𝑖1⋯𝑖𝑛

, 𝑖1,… , 𝑖𝑛 ∈ N.

According to Eq. (19), it follows that 𝑤𝒖𝑖1⋯𝑖𝑛 = 𝑤𝒙𝑖1⋯𝑖𝑛 . Hence, for
brevity, either 𝑤𝒖𝑖1⋯𝑖𝑛 or 𝑤𝒙𝑖1⋯𝑖𝑛 is referred to as 𝑤𝑖1⋯𝑖𝑛 throughout the
rest of this paper, i.e.,

𝑤𝑖1⋯𝑖𝑛 = 𝑤𝒖𝑖1⋯𝑖𝑛 = 𝑤𝒙𝑖1⋯𝑖𝑛 , (20)

and a normalized weight matrix for either 𝒖 or 𝒙 is defined as 𝒘 =
[𝑤𝑖1⋯𝑖𝑛 ].

As stated above, given 𝑀 original data samples 𝒙𝑘 = (𝑥𝑘1,… , 𝑥𝑘𝑛) ∈
R𝑛, 𝑘 ∈ M of a random vector 𝒙 = (𝑥1,… , 𝑥𝑛) with 𝑁𝑛 oriented grid
points 𝒈𝒙, we can always transform it to the data samples of another
random vector 𝒖 = (𝑥1,… , 𝑥𝑛) = 𝑻 (𝒙) where 𝑻 is defined in Eq. (16)
with 𝑁𝑛 axis-aligned grid points 𝒈𝒖 = 𝑻 ◦𝒈𝒙. For the random vector 𝒖
with grid points 𝒈𝒖, according to Section 4.2, we can formulate an ILP
optimization problem Eq. (14), whose solution determines an optimal
axis-aligned zonotope 𝑍 in Eq. (15). For the random vector 𝒙 with grid
points 𝒈𝒙, we can also formally formulate another ILP problem which
is formally identical to Eq. (14). Since Eq. (20) holds, the solution to
the ILP problem of 𝒙 is the same as that of 𝒖. Hence, the solution to
the ILP problem of 𝒙 determines a set 𝑻 −1(𝑍). The diagram of finding
𝑻 −1(𝑍) is illustrated in the following Fig. 3.

According to Lemma 1, since 𝑍 is a zonotope that satisfies rank(𝑮) =
𝑛 = 𝑘, and 𝑻 defined in Eq. (16) is invertible, then the set 𝑻 −1(𝑍) is also
a zonotope that satisfies rank(𝑮′) = 𝑛 = 𝑘 with 𝑮′ defined in Eq. (8).
Therefore, we find an optimal oriented zonotope 𝑻 −1(𝑍) which aligns
with the principal axes of the original data samples 𝒙𝑘 = (𝑥𝑘1,… , 𝑥𝑘𝑛) ∈
R𝑛, 𝑘 ∈ M.

5. Solution method

In this section, a heuristic algorithm is developed to efficiently solve
the ILP optimization problem formulated in the last section.

5.1. Optimal ILP algorithm

The cutting planes and branching algorithm built in Gurobi can
be utilized to solve an ILP optimization problem and find a globally
optimal solution. Please refer to [33] for details of the algorithm. Based
on cutting planes and branching algorithm built in Gurobi, Algorithm
7

2 is developed to solve the formulated ILP optimization framework
Eq. (14). An optimal solution of 𝑧𝑖1⋯𝑖𝑛 ∈ {0, 1}, 𝑖1,… , 𝑖𝑛 ∈ N to the ILP
problem Eq. (14) can be found by implementing Algorithm 2, which
determines an optimal zonotope which approximates the probabilistic
geofence identified in Algorithm 1.

Algorithm 2 Optimal ILP Algorithm
1: function Gurobi(𝛼, 𝒈𝒖, 𝒘)
2: 𝑖1,⋯ , 𝑖𝑛 = argmax(𝒘)
3: Formulate Eq. (14) on grid points 𝒈𝒖 weighted by 𝒘

at confidence level 𝛼
4: Use Gurobi to solve Eq. (14) for 𝑧𝑖1⋯𝑖𝑛
5: return 𝑧𝑖1⋯𝑖𝑛

6: function OptimalZonotope(𝛼, 𝒙𝑘)
7: Get 𝑛 linear independent unit vectors 𝒆1,⋯ , 𝒆𝑛

representing the orientation of 𝑀 data samples 𝒙𝑘
8: Get 𝑁𝑛 grid points 𝒈𝒙 aligning with 𝒆1,⋯ , 𝒆𝑛
9: 𝑨 = [𝒆1,⋯ , 𝒆𝑛]−1

10: 𝒙̄ = 1
𝑀

𝑀
∑

𝑘=1
𝒙𝑘

11: Get a bijective affine transformation
𝑻 (𝒙) = 𝑨(𝒙 − 𝒙̄) + 𝒙̄, 𝒙 ∈ R𝑛

12: Get 𝑁𝑛 grid points 𝒈𝒖 = 𝑻 ◦𝒈𝒙 aligning with the
axes of the coordinate system

13: Evaluate KDE 𝑓𝒖 on 𝒈𝒖 through implementing
Algorithm 1 and get the normalized weight matrix 𝒘

14: 𝑧𝑖1⋯𝑖𝑛 = Gurobi(𝛼, 𝒈𝒖, 𝒘)
15: Determine the optimal axis-aligned zonotope 𝑍

by the solution 𝑧𝑖1⋯𝑖𝑛
16: Determine the optimal oriented zonotope 𝑻 −1(𝑍)
17: return 𝑻 −1(𝑍)

18: OptimalZonotope(𝛼, 𝒙𝑘)

5.2. Heuristic ILP algorithm

Implementing the cutting planes and branching algorithm to solve
the formulated ILP optimization framework Eq. (14) for an optimal
solution is very computationally expensive. To overcome this issue, an
alternative heuristic algorithm is developed to efficiently solve Eq. (14)
for a near-optimal solution of 𝑧𝑖1⋯𝑖𝑛 ∈ {0, 1}, 𝑖1,… , 𝑖𝑛 ∈ N instead
of an optimal solution, which determines a near-optimal zonotope to
approximate the probabilistic geofence identified in Algorithm 1.

The procedure of the proposed heuristic algorithm is displayed in
Algorithm 3. Its main idea is summarized as follows:
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(1) The grid point (𝑖1,… , 𝑖𝑛) whose weight is the greatest is selected
to be covered by the near-optimal zonotope, namely, 𝑧𝑖1⋯𝑖𝑛 = 1;

(2) The grid point (𝑖′1,… , 𝑖′𝑛) whose weight is the second greatest is
selected to be covered, in other words, 𝑧𝑖′1⋯𝑖′𝑛 = 1. Also, all the grid
points (𝑗1,… , 𝑗𝑛) in

{

(𝑗1,… , 𝑗𝑛) ∶ min(𝑖1, 𝑖′1) ≤ 𝑗1 ≤ max(𝑖1, 𝑖′1),… ,min
(𝑖𝑛, 𝑖′𝑛) ≤ 𝑗𝑛 ≤ max(𝑖𝑛, 𝑖′𝑛)

}

are selected;
(3) If the sum of weights of the selected grid points exceeds the con-

fidence level 𝛼, jump to (5). Otherwise, the grid point (𝑖′′1 ,… , 𝑖′′𝑛 ) whose
weight is the third greatest and all the grid points in

{

(𝑗1,… , 𝑗𝑛) ∶
min(𝑖1, 𝑖′1, 𝑖

′′
1 ) ≤ 𝑗1 ≤ max(𝑖1, 𝑖′1, 𝑖

′′
1 ),… ,min(𝑖𝑛, 𝑖′𝑛, 𝑖

′′
𝑛 ) ≤ 𝑗𝑛 ≤ max(𝑖𝑛, 𝑖′𝑛, 𝑖

′′
𝑛 )
}

are selected;
(4) Repeat Step (3) to select the grid point whose weight is the

fourth greatest, fifth greatest ⋯, and all the grid points among the first
four greatest grids, five greatest grids ⋯, until the sum of weights of
the selected grid points exceeds the confidence level 𝛼;

(5) Then, the selection of grid points gives a near-optimal solution
𝑧𝑖1⋯𝑖𝑛 , 𝑖1,… , 𝑖𝑛 ∈ N to the ILP optimization problem Eq. (14), which
determines a near-optimal zonotope that we want.

Algorithm 3 Heuristic ILP Algorithm
1: function ILPHeuristic(𝛼, 𝒈𝒖, 𝒘)
2: 𝒘′= 𝒘.copy()
3: 𝑧𝑖1⋯𝑖𝑛 [1 ∶ 𝑁]⋯ [1 ∶ 𝑁] = 0
4: 𝑖1min,⋯ , 𝑖𝑛min = argmax(𝒘′)
5: 𝑖1max = 𝑖1min,⋯ , 𝑖𝑛max = 𝑖𝑛min

6: while
𝑁
∑

𝑖1 ,⋯,𝑖𝑛=1
𝑤𝑖1⋯𝑖𝑛𝑧𝑖1⋯𝑖𝑛 < 𝛼 do

7: 𝑖1,⋯ , 𝑖𝑛 = argmax(𝒘′)
8: 𝒘′[𝑖1]⋯ [𝑖𝑛] = 0.0
9: 𝑖1min = min(𝑖1min, 𝑖1), 𝑖1max = max(𝑖1max, 𝑖1)

⋮
𝑖𝑛min = min(𝑖𝑛min, 𝑖𝑛), 𝑖𝑛max = max(𝑖𝑛max, 𝑖𝑛)

10: 𝑧𝑖1⋯𝑖𝑛 [𝑖1min ∶ 𝑖1max]⋯ [𝑖𝑛min ∶ 𝑖𝑛max] = 1

11: return 𝑧𝑖1⋯𝑖𝑛

12: function ApproxZonotope(𝛼, 𝒙𝑘)
13: Get 𝑛 linear independent unit vectors 𝒆1,⋯ , 𝒆𝑛

representing the orientation of 𝑀 data samples 𝒙𝑘
14: Get 𝑁𝑛 grid points 𝒈𝒙 aligning with 𝒆1,⋯ , 𝒆𝑛
15: 𝑨 = [𝒆1,⋯ , 𝒆𝑛]−1

16: 𝒙̄ = 1
𝑀

𝑀
∑

𝑘=1
𝒙𝑘

17: Get a bijective affine transformation
𝑻 (𝒙) = 𝑨(𝒙 − 𝒙̄) + 𝒙̄, 𝒙 ∈ R𝑛

18: Get 𝑁𝑛 grid points 𝒈𝒖 = 𝑻 ◦𝒈𝒙 aligning with the
axes of the coordinate system

19: Evaluate KDE 𝑓𝒖 on 𝒈𝒖 through implementing
Algorithm 1 and get the normalized weight matrix 𝒘

20: 𝑧𝑖1⋯𝑖𝑛 = ILPHeuristic(𝛼, 𝒈𝒖, 𝒘)
21: Determine the near-optimal axis-aligned zonotope 𝑍

by the solution 𝑧𝑖1⋯𝑖𝑛
22: Determine the near-optimal oriented zonotope 𝑻 −1(𝑍)
23: return 𝑻 −1(𝑍)

24: ApproxZonotope(𝛼, 𝒙𝑘)

6. Main results

In this section, we conduct comprehensive case studies to compare
the performance of our proposed algorithm of Heuristic ILP with an-
other algorithm of Optimal ILP, Gaussian fit, the oriented bounding
box and the convex hull of probabilistic geofence [19]. All the algo-
rithms provide different convex sets to approximate the probabilistic
8

Fig. 4. Joint bimodal distribution generated by two marginal histograms.

geofence. We also conduct robustness analysis which demonstrates
the computational efficiency of the Heuristic ILP algorithm on finding
a near-optimal solution while enjoying accuracy and robustness, in
contrast to the Optimal ILP algorithm. The tests were implemented in
Python 3.9 and on an Intel(R) Core(TM) i9-12900KF, 3187 Mhz, 16
Core(s), 24 Logical Processor(s) Desktop with 64 GB RAM.

There are two main stages in the case studies:
(1) Utilizing KDE values and the probabilistic geofence derived from

a collection of 𝑀 data samples using the methodology outlined in
Algorithm 1, we construct an ILP optimization problem. Subsequently,
we employ different algorithms to establish convex approximations of
the probabilistic geofence;

(2) After obtaining these convex approximations, we generate a
new collection of data samples whose size surpasses 𝑀 significantly
and assess the ratio of data samples within the convex approximation
compared to the total number of generated data samples. As the num-
ber of data samples continues to increase, this ratio will tend towards
the true probability of the system state which lies within the convex
approximation.

6.1. Cases settings

6.1.1. Case I
In this case, we present a scatter plot depicting the possible instan-

taneous positions (data samples) (𝑥, 𝑦) of a vehicle on the plane, which
are generated by the marginal histograms of longitudinal position 𝑥 and
latitudinal position 𝑦 respectively. As shown in Fig. 4, the instantaneous
position of the vehicle obeys a non-Gaussian bimodal distribution.

6.1.2. Case II
In this case, we consider a free-flyer robot of six degrees of freedom

under uncertainties in [34], whose system state is 𝒙 = (𝒑, 𝒗, 𝒒,𝝎) ∈ R13,
control input is 𝒖 = (𝑭 ,𝑴) ∈ R6, and dynamics are 𝒑̇ = 𝒗, 𝑚𝒗̇ = 𝑭 , 𝒒̇ =
1
2𝜴(𝝎)𝒒, 𝑱𝝎̇ = 𝑴 −𝑺(𝝎)𝑱𝝎 where 𝑱 = diag

([

𝐽𝑥, 𝐽𝑦, 𝐽𝑧
])

. We discretize
the dynamics with 𝛥𝑡 = 1 s such that 𝒙𝑘+1 = 𝒙𝑘 + 𝒇𝑘(𝒙𝑘, 𝒖𝑘,𝜽𝑘)𝛥𝑡 + 𝒘𝑘
where 𝒘𝑘 ∼ 

(

𝟎,𝜮𝒘
)

are i.i.d. disturbances. The mass and inertia
are unknown with known bounds 𝑚 ∈ [7.1, 7.3], 𝐽𝑖 ∈ [0.065, 0.075],
|

|

𝑤𝑘𝑖
|

|

≤ 10−4 for 𝑖 = 1,… , 13, and |

|

𝑤𝑘𝑖
|

|

≤ 5 × 10−4 for 𝑖 = 4, 5, 6.
Our proposed method in the last section can find a 13-dimensional
zonotopic approximation for the system state 𝒙 ∈ R13 of the robot. In
the applications of AAM, we usually just need to consider 3D positions
𝒑 ∈ R3. Thus, we will find a 3D zonotopic approximation for the 3D
projection 𝒑 ∈ R3 of the system state 𝒙 ∈ R13 at time step 𝑘 = 20 s.

In addition to the parameters in both cases, the bandwidth matrix
𝑯 in Section 3.2 is

[ 0.2 0 ]

. The number of data samples is 𝑀 = 500 for
0 0.2
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Case I and 𝑀 = 1000 for Case II. In Case I, we establish a baseline with
the following parameters: the confidence level 𝛼 = 90%, the number of
grid points 𝑁2 = 202. In Case II, the baseline configuration includes the
onfidence level 𝛼 = 90% and the number of grid points 𝑁3 = 103. In

the subsequent figures and tables, the baseline is indicated using the
symbol ‘‘*’’.

6.2. Different numbers of grid points

In this part, we compare the performance of different algorithms
given different numbers 𝑁 of grid points in each dimension. For Case
I, 𝑁2 = 152, 202, and 252. For Case II, 𝑁3 = 83, 103, and 123. The other
parameters are the same as the baseline.

For Case I, the impact of different numbers of grid points is shown
in Figs. 5(a), 5(c), 5(e), and Table 1. The blue points indicate data sam-
ples. The black lattice indicates grid points. The probabilistic geofence
in 2D space obtained by Algorithm 1 is represented by the yellow
contour. The yellow box depicts the bounding box of this probabilistic
geofence, while the green ellipse corresponds to the outcome of Gaus-
sian fit. The blue (resp. red) box indicates the zonotope obtained by
the algorithm of Optimal ILP (resp. Heuristic ILP), which is determined
by the optimal (resp. near-optimal) solution to the ILP optimization
problem Eq. (14) through the implementation of Algorithm 2 (resp. Al-
gorithm 3). For Case II, the results are illustrated in Figs. 5(b), 5(d),
5(f), and Table 2. All the labels are the same as those in Case I
except that the cyan box indicates the bounding box of the probabilistic
geofence in 3D space obtained by Algorithm 1, and the green ellipsoid
is obtained by Gaussian fit.

For Case I, the results obtained by different algorithms are differ-
ent from each other. There can be a notable difference between the
zonotope obtained by Optimal ILP and that obtained by Heuristic ILP,
as shown in Fig. 5(a). This is because Heuristic ILP usually finds a
near-optimal solution while Optimal ILP guarantees an optimal one.
As shown in Table 1, compared with the ellipse of Gaussian fit and the
bounding box, the area of the zonotope of Optimal ILP or Heuristic ILP
is much smaller, which means the zonotopic approximation provided
by Optimal ILP or Heuristic ILP for the probabilistic geofence is tighter.
Also, the ratio of Optimal ILP or Heuristic ILP is much more accurate in
the sense that the gap between the confidence level 90% and the ratio
of Optimal ILP or Heuristic ILP is smaller. For example, when 𝑁2 = 202,
he ratio 90.8% of Optimal ILP or Heuristic ILP is more accurate than
7.8% of bounding box and 93.2% of Gaussian fit. This demonstrates
he advantage of Optimal ILP or Heuristic ILP in terms of accuracy.
herefore, compared with the result of bounding box or Gaussian fit
hich can be overly conservative, the zonotopic approximation of
robabilistic geofence is less conservative and more accurate. Thus,
ptimal ILP or Heuristic ILP can provide a larger feasible airspace for
AM.

As indicated in Table 1, for Optimal ILP and Heuristic ILP in Case I,
s the number of grid points rises from 152 to 202, the performance
n terms of accuracy greatly improves while the area of zonotope
ncreases. For example, the gap 0.8% between the ratio of Optimal
LP (resp. Heuristic ILP) and the confidence level is less than the gap
.8% (resp. 1.7%) between the ratio of Optimal ILP (resp. Heuristic
LP) and the confidence level. At the same time, the area increases
rom 39.1m2 (resp. 40.2m2) of Optimal ILP (resp. Heuristic ILP) to
3.1m2 of Optimal ILP (resp. Heuristic ILP). This makes sense because
ursuing tightness cannot contradict the priority of ensuring accuracy.
s the number of grid points rises from 202 to 252, the performance in

erms of accuracy still improves while the area slightly increases. For
xample, for both algorithms, the gap between ratio and confidence
evel drops from 0.8% to 0.2% while the area slightly increases from
3.1m2 to 43.6m2. This suggests we can obtain more accurate results
ithout increasing too much conservatism. However, for Optimal ILP,

he increase in the number of decision variables and constraints arising
9

rom the increasing number of grid points leads to a significant increase f
Table 1
Case I comparisons of different numbers of grid points in each dimension 𝑁 (Gap =
Absolute Value of Ratio — Confidence Level).

Algorithm Case I

# Grid points Ratio/Gap Area (m2) Time (s)

Optimal ILP

152

86.2%/3.8% 39.1 15
Heuristic ILP 88.3%/1.7% 40.2 0.01
Gaussian fit 93.5%/3.5% 43.6 0.01
Bounding box 98.0%/8.0% 54.9 0.02

Optimal ILP

202 *

90.8%/0.8% 43.1 93
Heuristic ILP 90.8%/0.8% 43.1 0.02
Gaussian fit 93.2%/3.2% 43.4 0.01
Bounding box 97.8%/7.8% 54.8 0.02

Optimal ILP

252

90.2%/0.2% 43.6 376
Heuristic ILP 90.2%/0.2% 43.6 0.03
Gaussian fit 92.8%/2.8% 44.5 0.01
Bounding box 97.0%/7.0% 53.9 0.03

Table 2
Case II comparisons of different numbers of grid points in each dimension 𝑁 (Gap =
Absolute Value of Ratio — Confidence Level).

Algorithm Case II

# Grid points Ratio/Gap Volume (m3) Time (s)

Optimal ILP

83

84.2%/4.2% 0.55 161
Heuristic ILP 84.2%/4.2% 0.55 0.01
Gaussian fit 93.9%/3.9% 0.99 0.02
Bounding box 98.1%/8.1% 1.31 0.01

Optimal ILP

103 *

91.1%/1.1% 0.69 916
Heuristic ILP 91.1%/1.1% 0.69 0.01
Gaussian fit 93.8%/3.8% 1.04 0.02
Bounding box 97.9%/7.9% 1.32 0.02

Optimal ILP

123

90.8%/0.8% 0.72 8376
Heuristic ILP 90.8%/0.8% 0.72 0.02
Gaussian fit 92.6%/2.6% 1.03 0.02
Bounding box 97.4%/7.4% 1.29 0.02

in computational time, from 15 s to 376 s. Hence, optimality comes at
the cost of computational efficiency. In contrast, the computational
time of Heuristic ILP is very short, from 0.01 s to 0.03 s, while the
onotope obtained by Heuristic ILP is almost the same as Optimal
LP. These results suggest although losing optimality, Heuristic ILP
uarantees near-optimality, accuracy, and efficiency.

For Case II, similar trends are followed, as shown in Figs. 5(b), 5(d),
(f), and Table 2. Accordingly, Heuristic ILP outperforms the other
hree algorithms in the sense that it effectively trades off computational
fficiency and accuracy.

.3. Different confidence levels

In this part, we compare the performance of different algorithms for
oth Case I and Case II with respect to three different confidence levels:
= 90%, 95%, and 99%. All the other parameters remain consistent
ith the baseline.

As shown in Fig. 6 and Tables 3, 4, for both Case I and Case II, when
he confidence level is fixed, the zonotope of Optimal ILP or Heuristic
LP is tighter than the ellipse (or ellipsoid) of Gaussian fit and bounding
ox. Also, the ratio of Optimal ILP or Heuristic ILP is more accurate. For
xample, for Case II with respect to 𝛼 = 90%, the volume 0.69m3 of the
onotope obtained by Optimal ILP or Heuristic ILP is less than 1.04m3

f the ellipsoid of Gaussian fit and 1.32m3 of bounding box. Also, the
ap between the confidence level 90% and the ratio 91.1% of Optimal
LP or Heuristic ILP is significantly smaller than 93.8% of Gaussian fit
nd 97.9% of Bounding box. Therefore, Optimal ILP or Heuristic ILP
utperforms Gaussian fit and bounding box in terms of optimality and
ccuracy, and finds a zonotope that provides a convex approximation

or the probabilistic geofence.
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Fig. 5. Comparisons of different numbers of grid points in each dimension 𝑁 .
For Case I (resp. Case II), as the confidence level increases, the area
(resp. volume) of the zonotope obtained by Optimal ILP or Heuristic
ILP also increases, while the computational time slightly fluctuates.
Given a common confidence level, the area (resp. volume) of the
zonotope obtained by Heuristic ILP is close to that obtained by Optimal
ILP. However, Heuristic ILP greatly outperforms Optimal ILP in terms
of computational efficiency. For example, given a confidence level
90%, for Case II, the computational time 0.02 s of Heuristic ILP is
greatly shorter than 916 s of Optimal ILP, while the volumes 0.69m3
10
of both zonotopes obtained by two different algorithms are the same.
Therefore, Heuristic ILP enjoys computational efficiency without losing
accuracy.

6.4. Zonotopic approximation versus convex hull

In addition to the algorithm of the bounding box, the algorithm
of the convex hull is another existing method that can provide a
convex bound for the probabilistic geofence. For Case I and II, we run
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Fig. 6. Comparisons of different confidence levels 𝛼.
both the Optimal ILP and Heuristic ILP algorithms to obtain zonotopic
approximations of the probabilistic geofence respectively, and compare
them with the bounding box and convex hull. The parameters stay the
same as the baseline.

The results of both Case I and II are shown in Figs. 7(a), 7(b) and
Table 5. On the one hand, compared with the result of the bounding
box, the result of the convex hull is tighter and more accurate. For
example, for Case I shown in Table 5, the area of convex hull 43.2m2 is
less conservative than bounding box 54.8m2, while the ratio of convex
11
hull 91.0% is far more accurate than bounding box 97.8%. On the other
hand, our proposed algorithm of Heuristic ILP beats the method of
the convex hull in terms of convenience while still enjoying accuracy
and computational efficiency. For instance, Case II, Table 5 shows
that the zonotope obtained by Heuristic ILP is almost as accurate as
the convex hull in the sense that the ratio/volume of Heuristic ILP
91.1%/0.69m3 is almost the same as that of convex hull 91.3%/0.71m3.
In addition, Heuristic ILP 0.01 s runs faster than the method of convex
hull 0.02 s, which demonstrates its computational efficiency against
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Table 3
Case I comparisons of different confidence levels 𝛼 (Gap = Absolute Value of Ratio —

onfidence Level).
Algorithm Case I

Confidence level Ratio/Gap Area (m2) Time (s)

Optimal ILP

90% *

90.8%/0.8% 43.1 93
Heuristic ILP 90.8%/0.8% 43.1 0.02
Gaussian fit 93.2%/3.2% 43.4 0.01
Bounding box 97.8%/7.8% 54.8 0.02

Optimal ILP

95%

95.4%/0.4% 53.4 77
Heuristic ILP 95.4%/0.4% 53.4 0.02
Gaussian fit 96.9%/1.9% 58.2 0.01
Bounding box 98.9%/3.9% 62.8 0.02

Optimal ILP

99%

99.4%/0.4% 78.4 66
Heuristic ILP 99.4%/0.4% 78.4 0.03
Gaussian fit 99.8%/0.8% 87.1 0.01
Bounding box 99.9%/0.9% 81.7 0.03

Table 4
Case II comparisons of different confidence levels 𝛼 (Gap = Absolute Value of Ratio —
Confidence Level).

Algorithm Case II

Confidence level Ratio/Gap Volume (m3) Time (s)

Optimal ILP

90% *

91.1%/1.1% 0.69 916
Heuristic ILP 91.1%/1.1% 0.69 0.01
Gaussian fit 93.8%/3.8% 1.04 0.02
Bounding box 97.9%/7.9% 1.32 0.02

Optimal ILP

95%

95.8%/0.8% 0.97 861
Heuristic ILP 95.8%/0.8% 0.97 0.01
Gaussian fit 97.3%/2.3% 1.45 0.02
Bounding box 99.2%/4.2% 1.60 0.02

Optimal ILP

99%

99.3%/0.3% 1.59 780
Heuristic ILP 99.3%/0.3% 1.59 0.01
Gaussian fit 99.9%/0.9% 2.57 0.02
Bounding box 99.9%/0.9% 2.46 0.02

convex hull. However, as illustrated in Figs. 7(a) and 7(b), the number
of facets (also called hyperfaces) of the convex hull is undetermined
and a convex hull usually has too many facets. If we want to avoid
collision in path planning, we need to formulate constraints that a point
is outside the convex hull and every facet will lead to a constraint.
Thus, too many facets can lead to too many constraints, which is not
convenient for the operations in practice. In contrast, Heuristic ILP can
overcome this limitation. In 𝑛-dimensional space, the number of facets
of the zonotope obtained by Heuristic ILP is always 2𝑛. Therefore, our
proposed Heuristic ILP algorithm performs as well as the method of
convex hull in terms of accuracy and computational efficiency, and
outperforms convex hull when it comes to the convenience of AAM
operations.

6.5. Robustness of heuristic ILP algorithm

We have shown that compared with Optimal ILP, the proposed
Heuristic ILP algorithm acquires computational efficiency at the cost
of optimality when providing zonotopic approximation for the prob-
abilistic geofence. However, there can be a difference between the
two zonotopes obtained by these two algorithms. Also, given the same
parameters, different data samples may lead to different zonotopes ob-
tained by each algorithm. This raises the following concerns regarding
the robustness of Heuristic ILP: (1) Space: we want to quantify the
difference between the zonotope of Heuristic ILP and that of Optimal
ILP every time, and evaluate whether the difference varies significantly
at different times; (2) Time: we would also like to evaluate whether the
computational time of Heuristic ILP differs a lot at different times under
same condition. A major difference at different times means Heuristic
12

ILP is not robust enough for applications in real scenarios. d
Jaccard distance can be introduced to quantify the difference be-
ween the zonotope of Optimal ILP and that of Heuristic ILP. Formally
peaking, given two sets 𝑆1 and 𝑆2, Jaccard distance between those two
ets is defined to be [27]

(𝑆1, 𝑆2) = 1 −
Card(𝑆1 ∩ 𝑆2)
Card(𝑆1 ∪ 𝑆2)

,

where the operation Card finds the cardinality of a set. A smaller
Jaccard distance indicates a higher degree of similarity between two
sets.

For both Case I and II, we analyze the Jaccard distance between
the zonotopes obtained by Heuristic ILP and Optimal ILP with respect
to the increasing number of grid points. All the other parameters
are the same as the baseline. Given a fixed number of grid points,
we generate different data samples twenty times in total and record
the computational time of each algorithm and the Jaccard distance
between the zonotopes obtained by both algorithms every time.

The results are illustrated in Fig. 8. On the one hand, for both
cases, Figs. 8(b) and 8(d) show that when the number of grid points
in each dimension is too small, different Jaccard distances fluctuate
significantly around the average value, suggesting that Heuristic ILP
has poor robustness in space under this condition. As 𝑁 increases
from 10 to 25 for Case I (resp. from 8 to 14 for Case II), the average
Jaccard distance decreases from 0.15 to 0.06 for Case I (resp. from
0.17 to 0.07 for Case II) respectively. This implies that as the number
of grid points increases, the zonotope acquired through Heuristic ILP
approaches a more optimal solution. In addition, the spread of different
Jaccard distances also decreases as 𝑁 increases, which suggests that
Heuristic ILP becomes more robust in space with respect to the increase
of the number of grid points. On the other hand, Figs. 8(a) and 8(c)
indicate that as 𝑁 increases, the computational time of Heuristic ILP
slowly increases from 0.01 s to 0.03 s for both cases. Additionally, as
the number of grid points grows, the spread of computational time
increases not significantly. Hence, Heuristic ILP enjoys computational
efficiency and robustness in terms of time.

Therefore, the increase in the number of grid points slightly inten-
sifies the computational effort while reducing the difference between
the zonotopes obtained by Heuristic ILP and Optimal ILP. We would
like to tune an appropriate parameter for the number of grid points,
which makes Heuristic ILP robust enough in space and time. By do-
ing so, Heuristic ILP enjoys near-optimality, accuracy, efficiency, and
robustness simultaneously.

In practice, the information about uncertainty changes over time,
and the distribution captured by the algorithm is also updated with
more data samples coming in, which brings a great challenge requiring
that the proposed algorithm must run in real-time to perform re-
computation every time newly observed data samples are added. Our
proposed method of Heuristic ILP, which consists of KDE computation
and solving ILP problems for zonotopic approximation, can handle this
concern very well. As indicated in Figs. 8(a) and 8(c), given a set of
data samples, the computational time of Heuristic ILP is under 0.05 s.

ence, the whole process of KDE computation together with zonotopic
pproximation can be updated in an online fashion. Every time the set
f data samples is updated with new data samples coming in, we can
apidly recompute a new zonotopic approximation. This demonstrates
he computational power of our proposed method and thus it can
andle streaming data online, which is well-suited for the operations
f AAM in real-time.

. Conclusion

How to ensure safety in real-time in high-dense, dynamic, and un-
ertain airspace environments is a pivotal challenge for the successful
peration of AAM. In this paper, we present an online algorithm to
dentify the probabilistic geofence of an arbitrary unknown probability

istribution using the data-driven approach of FFT-based KDE. How-
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Fig. 7. Zonotopic approximation versus convex hull of probabilistic geofence.
Fig. 8. Robustness analysis of Heuristic ILP algorithm.
Table 5
Zonotopic approximation versus convex hull of probabilistic geofence (Gap = Absolute Value of Ratio — Confidence Level).

Algorithm Case I * Case II *

Ratio/Gap Area (m2) Time (s) Ratio/Gap Volume (m3) Time (s)

Optimal ILP 90.8%/0.8% 43.1 93 91.1%/1.1% 0.69 916
Heuristic ILP 90.8%/0.8% 43.1 0.02 91.1%/1.1% 0.69 0.01
Gaussian fit 93.2%/3.2% 43.4 0.01 93.8%/3.8% 1.04 0.02
Bounding box 97.8%/7.8% 54.8 0.02 97.9%/7.9% 1.32 0.02
Convex hull 91.0%/1.0% 43.2 0.02 91.3%/1.3% 0.71 0.02
ever, the irregularity or non-convexity of the shape of the probabilistic
geofence refrains it from real applications. To address this issue, we
formulate an ILP optimization problem whose solution determines
an optimal zonotopic approximation of the probabilistic geofence. A
computationally efficient algorithm of Heuristic ILP is then developed
to solve the formulated ILP problem. Numerical studies are conducted
to compare the performance of the Heuristic ILP algorithm with other
13
algorithms ins providing convex approximations for the probabilistic
geofence. Simulation results demonstrate that the proposed Heuristic
ILP algorithm outperforms other algorithms in the sense that it enjoys
the benefit of computational efficiency without losing accuracy. Also,
the robustness analysis suggests that the Heuristic ILP algorithm can
efficiently find a near-optimal solution while enjoying accuracy and
robustness.



Reliability Engineering and System Safety 244 (2024) 109923P. Wu and J. Chen

a
F

D

t
J
F

D

A

G
o
n

R

Future work will be dedicated to applying the method we proposed
in this paper to the safe operations of AAM under uncertainty in real-
time. Also, one significant limitation of our work is that under the
environment where the obstacles are densely populated, the data sam-
ples of different obstacles may mess up, but our current method cannot
tell the difference and thus is not able to find a zonotopic approxima-
tion of probabilistic geofencing for distinct obstacles respectively. This
will be part of our future work.
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