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Fine-Tuned Convex Approximations of Probabilistic
Reachable Sets under Data-driven Uncertainties

Pengcheng Wu, Sonia Martinez, Fellow, IEEE, Jun Chen, Member, IEEE

Abstract—This paper proposes a mechanism to fine-tune
convex approximations of probabilistic reachable sets (PRS) of
uncertain dynamic systems. We consider the case of unbounded
uncertainties, for which it may be impossible to find a bounded
reachable set of the system. Instead, we turn to find a PRS that
bounds system states with high confidence. Our data-driven
approach builds on a kernel density estimator (KDE) accelerated
by a fast Fourier transform (FFT), which is customized to
model the uncertainties and obtain the PRS efficiently. However,
the non-convex shape of the PRS can make it impractical for
subsequent optimal designs. Motivated by this, we formulate
a mixed integer nonlinear programming (MINLP) problem
whose solution result is an optimal n sided convex polygon that
approximates the PRS. Leveraging this formulation, we propose
a heuristic algorithm to find this convex set efficiently while
ensuring accuracy. The algorithm is tested on comprehensive
case studies that demonstrate its near-optimality, accuracy,
efficiency, and robustness. The benefits of this work pave the way
for promising applications to safety-critical, real-time motion
planning of uncertain dynamic systems.

Note to Practitioners—This study is motivated by the realization
of safety-critical real-time motion planning for a dynamic system
under uncertainties. A popular method used to guarantee the
safe operation of uncertain dynamic systems is reachability
analysis. However, this method may not work well in the face
of the following challenges: unbounded uncertainties, unknown
distributions, generality, convexity, and efficiency. To address
these issues, we first present a data-driven approach to model
arbitrary unknown uncertainties and obtain a set encompassing
the system states with high confidence; Then we propose an
algorithm to efficiently find a tight convex polygon approximation
for the set. This clearly benefits real motion planning. When
considering collision avoidance in motion planning, a tight convex
approximation allows a larger feasible search area which may
provide a better-planned trajectory. Also, the efficiency of the
algorithm ensures that the motion planning can be realized in
real-time.

Index Terms—Probabilistic Reachable Set, Convex Approxi-
mation, Uncertain Dynamic System, Kernel Density Estimator,
Mixed Integer Nonlinear Programming

I. INTRODUCTION

The deployment of autonomous systems in urban ground
and air traffic environments requires the development of new

Pengcheng Wu is with the Department of Mechanical and Aerospace
Engineering, University of California San Diego, La Jolla, CA 92093, and also
with the Department of Aerospace Engineering, San Diego State University,
San Diego, CA 92182 pcwupat@ucsd.edu,pwu@sdsu.edu

Sonia Martinez is with the Department of Mechanical and Aerospace
Engineering, University of California San Diego, La Jolla, CA 92093
soniamd@eng.ucsd.edu

Jun Chen is with the Department of Aerospace Engineering, San Diego
State University, San Diego, CA 92182 jun.chen@sdsu.edu

real-time collision detection and resolution algorithms [1]–
[3]. However, widespread uncertainties in such systems raise
important concerns about their safety [4]. Such uncertainties
may have various causes, such as epistemic, given a lack of
understanding of the underlying mechanism, the gap between
simple assumptions and complex reality, or aleatoric, given
the inherent randomness in the systems, or the errors of
sensor measurements [5]–[8]. A popular method that is used
to guarantee the safe operation of uncertain dynamic systems
is based on reachability analysis [9]. This set-based method
computes the reachable set of states that are accessible by a
stochastic dynamic system from all initial conditions and all
admissible inputs and parameters [10]. Reachability analysis
has increasingly attracted significant attention from researchers
in the past decades [11]. In prior literature, accounting for
the knowledge of uncertainties, many algorithms have been
proposed to utilize detailed system information to figure out
a reachable set. However, existing algorithms may not work
well or even fail in the face of the following challenges:

1) Unboundedness: When uncertainties are unbounded, it
may be impossible to figure out a bounded reachable set
for an uncertain dynamic system. However, most real-world
applications need a bounded reachable set due to physical
limits.

2) Unknown Distributions: Uncertainties are often assumed
to obey Gaussian distributions in most literature. However, in
practice, the uncertainties may be non-Gaussian or even empir-
ical due to unknown system interconnections and nonlinearity
[12], [13].

3) Generality: To compute reachable sets, many algorithms
require detailed system information given a priori. However,
in some applications like complex cyber-physical systems that
are only accessible through experiments or simulations, this
detailed information is unavailable. Many algorithms also rely
on strong assumptions about the dynamics or uncertainties,
which are often unrealistic.

4) Convexity: The reachable set computed by most algo-
rithms is irregular or non-convex, which is hard to handle when
it comes to the resolution of collision avoidance in practice.

5) Efficiency: In order to realize real-time motion planning
and control of uncertain dynamic systems, the reachable set
must be computed efficiently. However, many algorithms are
computationally expensive.

To address the challenges, in what follows, we will first
review some related literature, and then introduce the contribu-
tions of our paper.
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A. Literature Review

A classical way to compute reachable sets for bounded
uncertainties is given by performing a Hamilton-Jacobi (HJ)
reachability analysis. It formulates the problem as a partial
differential equation which can be solved by numerical methods.
While computationally tractable in lower dimensions, the
method scales poorly to higher dimensions [1], [14]. Also, HJ
reachability analysis requires detailed information on dynamics
or uncertainties and relies on strong assumptions like there are
no time correlations of parameter uncertainties, which makes
it unavailable in some realistic scenarios [1].

When uncertainties are unbounded, it is often impossible
to guarantee collision avoidance with 100% certainty as the
reachable set becomes unbounded. Instead, researchers seek to
identify a trajectory with a probability of collision bounded by
a certain risk bound. One direct way to realize this goal is to
evaluate the probability of collision of a generated candidate
trajectory. The candidate trajectory will not be adopted until
the probability of collision is below the risk bound. However,
there is no closed-form expression to evaluate the probability
of collision, which poses difficulties to this approach [15], [16].
Another indirect but effective method consists of computing
a probabilistic reachable set (PRS) instead of an exact one
[17], [18]. A PRS is a set of possible states that a system
can reach with a certain probability. By means of this, the
stochastic constraint on the system, which sets a limit on
the collision probability, can be converted to a deterministic
constraint by which the generated trajectory does not intersect
with the PRS [19]. An advantage of this method is that it is
not only applicable for unbounded uncertainties but also for
bounded ones. As the risk bound approaches 0%, the PRS
becomes a superset of the reachable set [17]. In this paper, we
adopt the PRS approach.

Many existing works assume a Gaussian distribution of the
uncertainty [20], [21]. Blackmore et al. [19] use convex poly-
gons (or polytopes) determined by the mean and covariance of
the Gaussian distribution as a proxy of PRS. Wu and Chen et al.
[4], [6] directly use the level sets of the Gaussian distribution
to serve as PRS. However, in many scenarios uncertainties are
of non-Gaussian type [12]. Even in that case, some researchers
still make use of Gaussian distributions to approximate non-
Gaussian ones [22]. Unfortunately, this approach can not
guarantee that the risk of a generated trajectory is still within
a given bound [13]. Instead, Aoude et al. [23] apply a particle
method to evaluate the probability of collision in the process
of motion planning. Calafiore and Campi [24] use a scenario
approach by which stochastic constraints are sampled to obtain
a convex optimization problem whose solution is feasible for the
original stochastic constraints with high confidence. However,
all of the above typically require a large number of samples
for probabilistic assurance, which is neither feasible nor
computationally efficient. Alternatively, Han and Jasour et al.
[13] employ a moment-based method to characterize non-
Gaussian PRS. However, moment information is assumed
to be known a priori in their works, which is not realistic
as this information can only be learned online from sensor
measurements [25]. Moreover, the PRS is often irregular, which

is challenging to handle in practice.
Such drawbacks motivate the study of data-driven reach-

ability analysis, using data obtained from experiments or
simulations [25]–[27]. Devonport et al. [11] use the level
sets of a Christoffel function to estimate the reachable sets.
The Christoffel function is obtained from the samples of
the arbitrary unknown uncertainties, without requiring any
detailed information a priori. However, the level sets estimating
the reachable sets may be irregular or non-convex, which is
hard to deal with in practice. Motivated by this, Lew et al.
[1] employ a conservative convex hull of data samples for
reachable set approximation. The number of sides of the
convex hull is unspecified, leading to an arbitrary number
of constraints in subsequent design problems. A bounding box
can enclose data samples with a fixed number of sides but
is more conservative [28]. All the works above are intended
to estimate reachable sets given bounded uncertainties and
are not accurate approximations of the reachable sets because
lacking uncertainty quantification. For arbitrary probability
distributions, including unbounded ones, a natural way of
approximating reachable sets is via empirical or data-fitted
probability density functions (PDF), whose level sets serve
as the reachable sets. In this paper, we employ this approach
considering kernel density estimators (KDE) [29]. Our goal
is to address important limitations of adopting such a method
such as the lack of closed-form expressions for KDEs, the
irregular shapes of their level sets, and the conservativeness
and inaccuracy of taking convex hulls or bounding boxes of the
level sets. Some researchers have considered dynamic systems
with time delays [30], which is not done in this manuscript.
The extension of the proposed methodology to scenarios where
time delay matters is left for future work.

B. Contributions and Organization
This paper proposes an efficient convex approximation

of PRS of uncertain dynamic systems while ensuring their
accuracy. Our approach consists of two parts: (i) A data-
driven uncertainty quantification; (ii) An optimization problem
formulation to find the convex approximation.

The major contributions of this paper are the following:
1) We present an algorithm that efficiently finds the PRS

via KDE accelerated by a fast Fourier transform (FFT). FFT-
based KDE is customized to estimate the PDF under arbitrary
unknown uncertainties and therefore its level sets can serve
as a proxy for the PRS of the uncertainties. As an efficient
data-driven approach, FFT-based KDE can learn from data
online, and thus it neither requires a priori information nor
relies on strong assumptions;

2) We formulate an optimization problem of mixed integer
nonlinear programming (MINLP), resulting in an optimal n
sided convex polygon that approximates the PRS. As opposed
to a convex hull, users can arbitrarily customize the number
of sides. The optimization problem is established not by using
data samples directly but by weighted grid points from KDE,
which makes it tractable. Compared with bounding boxes, the
result obtained by this approach is more tight and accurate;

3) We develop a heuristic algorithm to efficiently solve
the formulated MINLP problem. This algorithm performs
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weighted sampling to select the representative grid points
from all the grid points from KDE, which significantly
reduces computational complexity. Comprehensive case studies
demonstrate that this algorithm enjoys the benefits of accuracy,
efficiency, near-optimality, and robustness while providing a
convex approximation for the PRS.

The rest of this paper is organized as follows. In Section II,
we formally define the concept of PRS and state the problem
as providing a convex approximation for it. In Section III, we
use KDE accelerated by FFT to model arbitrary probability
distributions and present an algorithm to find the PRS. In
Section IV, we formulate an MINLP optimization framework,
the solution of which leads to a convex polygon approximation
of the PRS. In Section V, we develop a heuristic algorithm
to efficiently solve the formulated MINLP. In Section VI,
we conduct comprehensive case studies to demonstrate the
performance of our proposed algorithm. In Section VII, we
draw conclusions and make suggestions for future research. In
addition, rigorous proofs of some propositions in this paper
are given in Section VIII Appendix.

II. PROBLEM STATEMENT

In this section, we take into account an uncertain discrete-
time dynamic system and introduce the concept of reachable
set and PRS of the system. Then, we present the goal of this
paper.

Consider a general discrete-time dynamic system of the form

xk+1 = f (xk,uk,θk,wk) , (1)

where xk ∈ Rn is the system state, uk ∈ Uk is an uncertain
control input, θk ∈ Θ is an uncertain parameter, wk ∈ W is an
uncertain disturbance, and x0 ∈ X0 is an initial state. Unlike
most prior works [1], in this paper, the sets Uk ⊂ Rm,Θ ⊂
Rp,W ⊂ Rq, and X0 ⊂ Rn can be unbounded. Given the
uncertainties of xk,uk,θk,wk, then xk+1 is a random vector
which obeys an unknown probability distribution.

Formally, the concept of reachable set is introduced as
follows.

Definition 1 (Reachable Set [31]). At time T , the reachable
set XT of the dynamic system in Eq. (1) is defined to be

XT :=
{
xT ∈ Rn : xk = f (xk−1,uk−1,θk−1,wk−1) ,

x0 ∈ X0,uk−1 ∈ Uk−1,θk−1 ∈ Θ,wk−1 ∈ W,

k ∈ {1, . . . , T}
}
,

where x0 is the initial state and X0 is the initial set.

Observe that, since the sets Uk−1,Θ,W, and X0 are not lim-
ited to bounded sets, the reachable set XT may be unbounded.
Hence, it may be infeasible to find a bounded set in which the
state is guaranteed to lie. Instead, we expect to find a bounded
set such that the probability of the state lying in the bounded
set is greater than a confidence level. To this end, we formally
introduce the concept of the PRS as follows.

Definition 2 (Probabilistic Reachable Set (PRS) [18]). At
time k, a bounded set X̃k is defined to be a probabilistic

reachable set (PRS) of the dynamic system in Eq. (1) at
confidence level α if and only if

Pr(xk ∈ X̃k) ≥ α.

A PRS is a set of possible states that a system can reach
with a certain probability. Note that X̃k may not exist. When
α = 100%, if there exists a PRS X̃k, then X̃k is a superset of
the reachable set.

In this paper, we assume the dynamic system in Eq. (1)
is two-dimensional, and leave the general dimension case for
future work. The goal of this paper is twofold: 1) We aim to put
forward a data-driven approach to model the arbitrary unknown
uncertainties and obtain a PRS X̃k of the dynamic system; 2)
Motivated by the realization of safety-critical real-time motion
planning for uncertain systems, we aim to approximate the PRS
X̃k by means of a bounded set that satisfies: i) Convexity: The
boundary of the set is an n sided convex polygon; ii) Efficiency:
The computation of this set is tractable; iii) Accuracy: The
probability of the state xk lying in the set is close to the
prescribed confidence level α; iv) Optimality: The area of the
set is as small as possible (not too conservative) while ensuring
accuracy.

III. PRS IDENTIFICATION

In this section, we model an arbitrary unknown probability
distribution through FFT-based KDE, and develop an online
algorithm to find a PRS at confidence level α.

A. FFT-Based KDE

We first briefly review FFT-based KDE. The concept of
KDE is introduced below.

Definition 3 (Kernel Density Estimator (KDE) [29]). Let
xk ∈ R2, k ∈ {1, . . . ,M} be M data samples drawn
from a 2-variate probability distribution given by a PDF
f : R2 7→ R. The kernel density estimator (KDE) f̂ : R2 7→ R
to approximate the PDF f is defined to be

f̂(x) =
1

M

M∑
k=1

K(x− xk),

where the function K : R2 7→ R is the kernel function which
is a symmetric 2-variate density function.

The choice of the kernel function K is not critical to the
accuracy of KDE, so we use the standard 2-variate Gaussian
kernel in this paper

K(x) = (2π)−1det(H)−
1
2 exp(−1

2
x⊤H−1x), (2)

where H is a symmetric and positive definite bandwidth matrix.
The choice of bandwidth matrix is crucial to the accuracy
of KDE approximating PDF. In this paper, we choose the
bandwidth matrix using Silverman’s rule [32].

Consider a mesh of N2 grid points {(xi, yj) ∈ R2 : i, j ∈
{1, . . . , N}} equally spaced on the plane R2, the boundary
of which encompasses all M data samples xk ∈ R2, k ∈
{1, . . . ,M}. The mesh of grid points can be viewed as a map
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g : {(i, j) : i, j ∈ {1, . . . , N}} 7→ {(xi, yj) ∈ R2 : i, j ∈
{1, . . . , N}} given by

(xi, yj) = g(i, j), i, j ∈ {1, . . . , N}, (3)

where (i, j) is the index of a grid point whose coordinate is
(xi, yj). Throughout the rest of this paper, a coordinate g(i, j)
is abbreviated as gij .

The KDE f̂ given in Definition 3 can be evaluated on the
mesh of N2 grid points g in Eq. (3), which yields

f̂ij := f̂(gij) =
1

M

M∑
k=1

K(gij − xk), i, j ∈ {1, . . . , N}.

One way to significantly accelerate the evaluation of KDE
is linear binning. Instead of placing the kernel functions K
on M data samples, we can place them on N2 grid points g
weighted by grid counts cuv, u, v ∈ {1, . . . , N}. A grid count
cuv is a weight chosen to represent the amount of data samples
near a grid point guv . To obtain cuv , we can go through every
data sample and assign weights to its neighbouring grid points,
as shown in Fig. 1.

Fig. 1. Graphical representation of 2-variate linear binning

Using the strategy of linear binning, the binned KDE f̃ :
R2 7→ R to approximate the KDE f̂ in Definition 3 is given
by

f̃(x) =
1

M

N∑
u=1

N∑
v=1

K(x− guv)cuv, (4)

where cuv is the grid count of the grid point guv indexed by
(u, v).

Evaluating the binned KDE f̃ in Eq. (4) on the mesh of N2

grid points g yields

f̃ij := f̃(gij) =
1

M

N∑
u=1

N∑
v=1

K(gij − guv)cuv,

i, j ∈ {1, . . . , N},
(5)

which shows that the matrix f̃ := [f̃ij ] is the discrete
convolution of c := [cuv] and k := [K(guv)].

The discrete convolution can be computed by FFT, which
significantly saves computational time. Let C and K be FFT
of c and k, and F̃ be the element-wise product of C and K.
Then f̃ can be extracted from the inverse FFT of F̃ . By doing
so, we can obtain the binned KDE f̃ij , i, j ∈ {1, . . . , N} in

Eq. (5) to approximate the PDF f of an arbitrary unknown
probability distribution in real-time [15], [33].

B. Online Computation of PRS

For real-time motion planning of uncertain dynamic systems,
we propose an efficient data-driven algorithm using FFT-based
KDE to capture PRS of an unknown static uncertainty whose
data samples are gradually observed. See Algorithm 1.

In the pseudo-code of Algorithm 1, the symbol ϵ represents
the tolerance of confidence error. From Line 10 through 17,
FFT is employed to accelerate the computation of the discrete
convolution of c and k to obtain the binned KDE f̃ evaluated
on the mesh of N2 grid points g. From Line 18 through 33,
a bisection search is implemented to find the critical binned
KDE value Ckde at which the confidence level α is achieved.
The level set of the KDE corresponding to Ckde is the PRS
that we aim to find.

As the number of the collected data samples increases, KDE
captured from those data samples will be convergent to the
true PDF of the unknown uncertainties. However, considering
more data samples requires a longer evaluation time. Fig. 2
shows how increasing data samples influence the evaluation
time of identifying a PRS at confidence level 95% on a mesh
of 1282 grid points through implementing Algorithm 1. As the
number of data samples increases, the proposed Algorithm 1
can rapidly recompute. For example, when the number of data
samples is within the range of 103 to 104, the evaluation time
of implementing Algorithm 1 is always under 0.01 s. This
result demonstrates the computational power of our proposed
Algorithm 1 and thus it can handle streaming data in a
reasonable way. However, it cannot guarantee to deal with
uncertainties that can evolve with time, and this will be part
of our future work.

Moreover, note that the shape of a PRS obtained in this
way is often irregular, which precludes its use in subsequent
applications requiring an optimal design. This will be solved
in the next section.

Fig. 2. Evaluation time of Algorithm 1 with respect to the increasing number
of data samples

IV. MINLP FORMULATION FOR PRS APPROXIMATION

In this section, we formulate the convex approximation
problem stated in Section II as an MINLP optimization problem
for the PRS of a two-dimensional system subject to arbitrary
uncertainties.
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Algorithm 1 PRS Identification Algorithm
1: function GENDS(M )
2: Generate M data samples xk, k ∈ {1, . . . ,M}
3: return xk

4: function MESHGRID(xk, N )
5: Get xmin, xmax, ymin, ymax from data samples xk

6: h = linspace(xmin, xmax, N)
7: v = linspace(ymin, ymax, N)
8: g = Cartesian product of h and v
9: return g

10: function FFTKDE(xk, g)
11: Obtain grid counts c for all grid points g using xk

12: Evaluate kernel functions k on all grid points g
13: C = FFT(c)
14: K = FFT(k)
15: F = the element-wise product of C and K
16: f̃ = iFFT(F )
17: return f̃

18: function BISECSEARCH(f̃ , α, ϵ)
19: low = min(f̃)
20: up = max(f̃)
21: while low < up do
22: mid = (low + up)/2
23: zbin = (f̃ ≥ mid) · 1
24: zmix = element-wise product of zbin and f̃
25: pr = sum(zmix)/ sum(f̃)
26: if abs(pr − α) ≤ ϵ then
27: Ckde = mid
28: return zbin, Ckde

29: else if pr < α then
30: up = mid
31: else
32: low = mid
33: return Failure

34: function FINDPRS(M , N , α, ϵ)
35: xk = GENDS(M )
36: g = MESHGRID(xk, N )
37: f̃ = FFTKDE(xk, g)
38: zbin, Ckde = BISECSEARCH(f̃ , α, ϵ)
39: return g, f̃ , zbin, Ckde

40: FINDPRS(M , N , α, ϵ)

Recall that, after evaluating Eq. (5) through the imple-
mentation of Algorithm 1, we have obtained that each grid
point gij , i, j ∈ {1, . . . , N} has a binned KDE value
f̃ij , i, j ∈ {1, . . . , N}, respectively. We define a normalized
weight matrix w := [wij ] whose element is

wij :=
f̃ij

N∑
i=1

N∑
j=1

f̃ij

, i, j ∈ {1, . . . , N}. (6)

The MINLP will be established using these weights, and not
with the original data samples. This makes it more tractable
because the number of grid points is far less than the number
of data samples, significantly reducing the number of decision
variables and constraints.

A. Problem Description and Objective Function Formulation

The optimization goal is to find a minimum n sided convex
polygon to approximate the PRS efficiently and accurately, by
determining which weighted grid points should lie inside the
polygon.

To this end, we introduce three types of decision variables
to formulate the MINLP optimization problem:

• 2n continuous variables ak, bk ∈ R, k ∈ {1, . . . , n};
• N2n binary variables lkij ∈ {0, 1}, i, j ∈ {1, . . . , N}, k ∈

{1, . . . , n};
• N2 binary variables zij ∈ {0, 1}, i, j ∈ {1, . . . , N}.
Here the integer n ≥ 3 is the number of convex polygon

edges; The integer N is the number of grid points in each
dimension; An ordered pair of real numbers (ak, bk) indicates
the coefficients of a line lk which is the extension of an edge
of the convex polygon; The binary variable lkij = 1 if and only
if the grid point gij , indexed by (i, j), lies on the specified
side of the line lk; The binary variable zij = 1 if and only if
the grid point gij lies inside the polygon. We will fully discuss
the roles of these decision variables in what follows.

Our goal is to make the convex polygon as small as possible
without violating the constraints. This can be realized by
minimizing the number of grid points lying inside the polygon.
Formally speaking, our optimization objective function can be
formulated as

min

N∑
i=1

N∑
j=1

zij , (7)

where
N∑
i=1

N∑
j=1

zij is a linear function of binary variables zij .

B. Constraints on Continuous Variables

All the planar lines not passing through the origin can be
represented by

{ax+ by − 1 = 0 : a, b ∈ R ∧ a2 + b2 ̸= 0},

and different pairs of coefficients (a, b) determine different
lines.

A line lk := akx + bky − 1 = 0 always divides the entire
plane into two half-planes. We refer to the half plane {(x, y) :
akx+ bky − 1 < 0} where the origin (0, 0) lies as the strict
inner side of the line, and {(x, y) : akx+ bky− 1 ≤ 0} as the
inner side of the line. A strict inner side is a proper subset of
the inner side of the same line.

For any n ≥ 3 planar lines not passing through the origin,
the region S bounded by these lines is defined as

S := {(x, y) :
n∧

k=1

akx+ bky − 1 ≤ 0}, (8)
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where ak, bk ∈ R, a2k + b2k ̸= 0, and n ≥ 3. On the one hand,
since S is the intersection of n inner sides, then S is a convex
set and the origin (0, 0) ∈ S; On the other hand, the region S
may be not a bounded set (In other words, the boundary of S
may be not enclosing). Even though bounded, the boundary of
S may be a polygon with the number of edges less than n, or
even not a polygon but an object consisting of line segments
or a point only.

We look for conditions that ensure S is a bounded n sided
convex polygon with the origin in its interior. To do this, we
first introduce the following concepts.

Definition 4 (Digraph [34]). A finite directed graph (in short,
a digraph) is a 2-tuple (V,E), where V ⊆ R2 is a finite set of
planar points called nodes and E ⊆ V × V is a set of ordered
pairs of nodes called (directed) edges. Self-loops are allowed
in a digraph. For u, v ∈ V , if the ordered pair (u, v) ∈ E, it
denotes an edge from u to v.

Definition 5 (Path [34]). A finite directed path (in short,
a path) given by a finite sequence of planar points Sg :=
(Sg[0], . . . , Sg[m]) where Sg[i] ∈ R2, i ∈ {0, . . . ,m}, is a
digraph whose set of nodes V = {Sg[i] : i ∈ {0, . . . ,m}} and
set of edges E = {(Sg[i], Sg[i+ 1]) : i ∈ {0, . . . ,m− 1}}. In
a path Sg , one node Sg[i] immediately precedes another node
Sg[j] if and only if there is an edge (Sg[i], Sg[j]); Two nodes
are consecutive if and only if one immediately precedes the
other; Three nodes are consecutive if and only if the first one
immediately precedes the second and the second immediately
precedes the third.

Note that if Sg[i] = Sg[j], i ̸= j, then {Sg[i], Sg[j]} =
{Sg[i]}, according to the Axiom of Extensionality in axiomatic
set theory [35]. For a node Sg[i] in Sg , the node which Sg[i]
immediately precedes (resp. which immediately precedes Sg[i])
may not exist, and even if it exists, it may be not unique. If there
is an edge (Sg[i], Sg[i]), then Sg[i] immediately precedes itself.
It is possible that Sg[i] immediately precedes Sg[j] and Sg[j]
immediately precedes Sg[i] at the same time if (Sg[i], Sg[j])
and (Sg[j], Sg[i]) are both edges in Sg .

Definition 6 (Graph and Undirected Version of Digraph [34]).
A finite undirected graph (in short, a graph) is a 2-tuple (V,E),
where V ⊆ R2 is a finite set of planar points called nodes and
E is a set of unordered pairs of nodes called (undirected) edges.
Self-loops are not allowed in a graph. For u, v ∈ V, u ̸= v, if
the set {u, v} ∈ E, it denotes an edge between u and v. A
graph (V,E) is the undirected version of a digraph (V,E′) if
and only if (u, v) ∈ E′ ∨ (v, u) ∈ E′ ⇐⇒ {u, v} ∈ E for
u, v ∈ V, u ̸= v.

In this paper, these definitions emphasize the planar geo-
metric properties. For example, the positions of nodes are 2D
coordinates; The shape of an edge connecting two distinct
nodes is a straight line segment and the shape of a self-loop is
a point. The operation of taking undirected version preserves
geometric properties. For example, for any three nodes collinear
in a digraph, these nodes must also be collinear in the graph
which is the undirected version of the digraph.

Definition 7 (Enclosing Path). A path Sg is enclosing if
and only if: 1) There are n ≥ 3 different nodes; 2) No nodes
appear more than once in the sequence Sg except for the case
of the initial and final node, which should be identical; 3) For
any edge connecting two nodes, no other nodes lie on that
edge.

For example, all the paths in Fig. 3 are not enclosing.
The path (1, 2, 3, 4, 2, 1) in Fig. 3a violates Condition 2) in
Definition 7 because Node 2 appears more than once; The path
(1, 2, 3, 4) in Fig. 3b also violates Condition 2) because the first
node 1 and last node 4 are not identical; The path (1, 2, 3, 4, 1)
in Fig. 3c satisfies first two conditions, but violates Condition
3) because Node 4 is on the edge (1, 2).

(a) A path violating
Condition 2)

(b) A path violating
Condition 2)

(c) A path violating
Condition 3)

Fig. 3. Three cases of paths that are not enclosing

Through the definition of an enclosing path, we can introduce
a definition of an enclosing graph.

Definition 8 (Enclosing Graph). A graph G is enclosing if
and only if there is an enclosing path Sg whose undirected
version is G.

For example, the graph G in Fig. 4 is not enclosing because
any path whose undirected version is G is not an enclosing
path.

Fig. 4. A graph that is not enclosing

It is straightforward to see that if a path Sg is enclosing,
then its undirected version G is also enclosing. Conversely,
if a path is not enclosing, its undirected version may still be
enclosing.

Inspired by Definition 7 but subtly different from it, we
define the following notion.

Definition 9 (Formally Enclosing Sequence of Symbols).
Let Ss be a finite sequence of symbols. The sequence Ss is
formally enclosing if and only if: 1) There are n ≥ 3 formally
different symbols; 2) No symbols appear more than once except
for the case in which the initial and final symbol are formally
identical.

In a finite sequence of symbols Ss, one symbol immediately
precedes another symbol if and only if there is an appearance
Ss[i] of the first one and an appearance Ss[j] of the second
such that j = i + 1; Two symbols are consecutive if and
only if one immediately precedes the other; Three symbols are
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consecutive if and only if the first one immediately precedes
the second and the second immediately precedes the third.

A finite sequence of symbols is just an ordered structure,
which neither has to be enclosing nor has geometric meaning.
To address this, we introduce an isomorphism map, as defined
below.

Definition 10 (Isomorphism Type A). Let ftag be a map from
a finite sequence of symbols Ss to a path Sg . The map ftag is
an isomorphism type A if and only if the following properties
hold for ftag: 1) Injective: formally different symbols in Ss

refer to different nodes in Sg; 2) Surjective: every node in Sg

is the image of a symbol in Ss; 3) Order-Preserving: for any
two symbols Ss[i], Ss[j] in Ss, the symbol Ss[i] immediately
precedes Ss[j] if and only if (ftag(Ss[i]), ftag(Ss[j])) is an edge
in Sg; 4) Not on the edge: for any two consecutive symbols
Ss[i], Ss[i+ 1] and any third symbol Ss[k] in Ss, if Ss[k] is
formally different from Ss[i] and Ss[i+ 1], then ftag(Ss[k]) is
not on the edge (ftag(Ss[i]), ftag(Ss[i+ 1])) in Sg .

Remark 1. Observe that if there is an isomorphism type A
ftag from a finite sequence of symbols Ss to a path Sg, then
Ss is formally enclosing if and only if Sg is enclosing. We
have seen that if Sg is enclosing, then its undirected version
G is also enclosing. Therefore, we conclude that if ftag is
an isomorphism type A from Ss to Sg, and Ss is formally
enclosing, then the graph G, as the undirected version of Sg,
is also enclosing.

In addition to the discussions of enclosing paths and graphs
above, we would also like to explore under which conditions
it suffices to guarantee non-degenerate paths and graphs.

Definition 11 (Non-Degenerate Path and Graph). Let Sg

(resp. G) be a path (resp. a graph) with nodes given by a set
of n ≥ 3 points in R2. The path Sg is a non-degenerate path
if and only if any three consecutive nodes in the sequence Sg

are not collinear. The graph G is a non-degenerate graph if
and only if there is a non-degenerate path Sg whose undirected
version is G. A path Sg (resp. a graph G) is degenerate if and
only if it is not non-degenerate.

Requiring that the number of nodes is n = 4, the following
Fig. 5 gives two degenerate paths. In Fig. 5a, the path
(1, 2, 2, 3, 1) is degenerate, because the number of nodes in the
path is three less than n = 4 and there are three consecutive
nodes (1, 2, 2) that are collinear. The path (1, 2, 3, 4, 1) in
Fig. 5b is also degenerate, because there are three consecutive
nodes (2, 3, 4) that are collinear.

(a) A degenerate path
(1, 2, 2, 3, 1) with
three nodes

(b) A degenerate path
(1, 2, 3, 4, 1) with
four nodes

Fig. 5. Two cases of degenerate paths

Requiring that the number of nodes is n = 4, the following
Fig. 6 gives two degenerate graphs, which are the undirected
version of the two paths shown in Fig. 5, respectively.

(a) A degenerate graph
with three nodes

(b) A degenerate
graph with four nodes

Fig. 6. Two cases of degenerate graphs

Note that non-degenerate graphs (resp. paths) and enclosing
graphs (resp. paths) are two independent concepts. The follow-
ing Fig. 7 gives examples to illustrate the difference between
those two concepts.

Fig. 7. Examples of enclosing or non-degenerate graphs

Definition 12 (Isomorphism Type B). Let ftag be a map from
a finite sequence of symbols Ss to a path Sg . The map ftag is
an isomorphism type B if and only if the following properties
hold for ftag: 1) Injective: formally different symbols in Ss

refer to different nodes in Sg; 2) Surjective: every node in Sg

is the image of a symbol in Ss; 3) Order-Preserving: for any
two symbols Ss[i], Ss[j] in Ss, the symbol Ss[i] immediately
precedes Ss[j] if and only if (ftag(Ss[i]), ftag(Ss[j])) is an edge
in Sg; 4) Noncollinearity: for any three consecutive symbols
in Ss, their images are not collinear in Sg .

Remark 2. Observe that if there is an isomorphism type B
ftag from a finite sequence of symbols Ss to a path Sg, and
there are n ≥ 3 formally different symbols in Ss, then Sg and
its undirected version G are both non-degenerate.

Note that Condition 4) in Definition 12 of isomorphism
type B is different from Condition 4) in Definition 10
of isomorphism type A. For example, the label shown in
Fig. 8a gives a map ftag from the sequence of symbols
(“a”, “b”, “c”, “d”, “b”) to the path (a, b, c, d, b). The map
ftag is an isomorphism type A but not an isomorphism type
B, because there are three consecutive symbols “a”, “b”, “c”
whose images a, b, c are collinear in the path. This violates
Condition 4) in Definition 12. In contrast, the label shown in
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Fig. 8b gives another map f ′
tag from the sequence of symbols

(“a”, “b”, “c”, “d”) to the path (a, b, c, d). The map f ′
tag is an

isomorphism type B but not an isomorphism type A, since
although the symbol “d” is formally different from each of
the two consecutive symbols “a”, “b”, Node d is on the edge
(a, b) in the path. This violates Condition 4) in Definition 10.

(a) An isomorphism
type A

(b) An isomorphism
type B

Fig. 8. Examples of isomorphisms type A or type B

We go back to look for the conditions that ensure S in
Eq. (8) is a bounded n sided convex polygon with the origin
in its interior.

For any two lines li := aix + biy − 1 = 0 and lj :=
ajx+ bjy − 1 = 0, if Dij := aibj − biaj ̸= 0, then there is a
unique intersection point between those two lines, which is

Vij := li ∩ lj =

(
−bi − bj

Dij
,
ai − aj
Dij

)
.

Note that Vij = Vji. The fact Dij ̸= 0 implies that a2i + b2i ̸=
0 ∧ a2j + b2j ̸= 0, and also implies that ai ̸= aj ∨ bi ̸= bj ,
namely, Vij ̸= (0, 0). This makes sense since neither lines
passes through the origin and therefore the origin is definitely
not the intersection point. The sign of Dij depends on the order
of i and j, namely, Dij = −Dji. For two lines li, lj sharing
a unique intersection point, if we can rotate li’s normal vector
(ai, bi) to lj’s normal vector (aj , bj) counterclockwise about
the origin by an angle θ ∈ (0, π), then Dij > 0; otherwise,
Dij < 0. When Dij < 0, we can swap the value of (ai, bi)
with that of (aj , bj) so that Dij > 0. Hence, without loss of
generality, we can assume that Dij > 0.

For simplicity of notation, we define a unary operation i⊕

for i ∈ {1, . . . , n}

i⊕ :=

{
i+ 1, i ∈ {1, . . . , (n− 1)},
1, i = n,

where i + 1 is the ordinary arithmetic operation of addition.
Inversely, we can define another unary operation i⊖ for i ∈
{1, . . . , n}, that is, j = i⊖ if and only if j⊕ = i.

Consider n ≥ 3 planar lines not passing through the origin,
denoted by lk, k ∈ {1, . . . , n}. We hope the boundary of the
region S, generated by these lines in the way Eq. (8) gives,
is an enclosing n sided convex polygon with the origin in
its interior. A necessary condition to make it is that there
are at least n different line intersection points serving as n
nodes of the polygon. Without loss of generality, we require
the existence of such n formally different intersection points
Vij , i ∈ {1, . . . , n}, j = i⊕ (which also implicitly requires
li ̸= lj , i ∈ {1, . . . , n}, j = i⊕). To enforce this, we formulate
the following constraints

Dij := aibj − biaj > 0, i ∈ {1, . . . , n}, j = i⊕. (9)

Nevertheless, satisfying Eq. (9) can not ensure that there are
indeed n different intersection points (resp. lines), because
two formally different representations of the intersection
points (resp. lines) may refer to an identical intersection point
(resp. line), as illustrated in Fig. 9.

(a) The point V12 and V23 are
identical

(b) The line l3 and l6 are iden-
tical

(c) The line l1 and l3, the point
V12 and V23, as well as the
point V34 and V41 are identical

Fig. 9. Scenarios of identical intersection points or lines while satisfying
Eq. (9)

The boundary of a region S generated by a finite set of
lines can be defined as the undirected version G of a path
Sg . Throughout the rest of this paper, when a graph G is the
undirected version of a path Sg , we say the graph G is formed
by Sg. For any n ≥ 3 planar lines lk, k ∈ {1, . . . , n} not
passing through the origin, if there are n formally different
intersection points Vij , i ∈ {1, . . . , n}, j = i⊕, we can
construct a path given by a finite sequence of intersection
points Sg := (V12, V23, . . . , V(n−1)n, Vn1, V12). If the graph G
formed by Sg is an enclosing n sided convex polygon with
the origin in its interior, then the boundary of the region S is
identical to the graph G, and therefore the boundary of the
region S is also an enclosing n sided convex polygon with
the origin in its interior. Hence, to make the boundary of the
region S an enclosing n sided convex polygon with the origin
in its interior, we just need to ensure the graph G formed by
Sg is an enclosing n sided convex polygon with the origin in
its interior.

However, for certain n ≥ 3 planar lines not passing through
the origin that have n formally different intersection points
Vij , i ∈ {1, . . . , n}, j = i⊕, the graph G formed by Sg may
be not an enclosing n sided convex polygon with the origin in
its interior. Specifically, 1) the graph G may be not enclosing.
For example, the graph G in Fig. 9c is a line segment and is
not enclosing; 2) The graph G may degenerate to a polygon
whose number of edges less than n, or even not a polygon but
line segments or a point. For example, the graph G in Fig. 9a
is a triangle, not a quadrilateral as required; 3) The graph G
may be not convex (may be concave or self-intersecting), as
illustrated in Fig. 10a and Fig. 10b; 4) The origin (0, 0) may
be not in the interior of the graph G, as shown in Fig. 10c.
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(a) A concave
quadrilateral formed by
(V12, V23, V34, V41, V12)

(b) A self-intersecting
quadrilateral formed by
(V12, V23, V34, V41, V12)

(c) A convex
quadrilateral formed by
(V12, V23, V34, V41, V12) with
the origin in its exterior

Fig. 10. Cases of graphs that are not enclosing n sided convex polygons with
the origin in its interior (The shadowed area is the region S defined in Eq. (8)
and the red point is the origin)

As discussed above, the constraints Eq. (9) are not sufficient
to guarantee that the graph G formed by Sg is an enclosing
n sided convex polygon with the origin in its interior. To this
end, we provide additional constraints in Theorem 1.

Before proceeding to Theorem 1, we first introduce Lemma 1.
This lemma is useful in the sense that once constraints Eq. (9)
and Eq. (10) are satisfied, we no longer need to explicitly
enforce that all n intersection points (resp. lines) are indeed
different from each other.

Lemma 1. Assume that there are n ≥ 3 planar lines not
passing through the origin (0, 0), denoted by lk := akx +
bky− 1 = 0, k ∈ {1, . . . , n}. If there are n intersection points
Vij := li ∩ lj , i ∈ {1, . . . , n}, j = i⊕, and the coefficients of
these lines satisfy the following inequalities

− ak (bi − bj) + bk (ai − aj)− (aibj − biaj) < 0,

i ∈ {1, . . . , n}, j = i⊕, k ∈ {1, . . . , n} − {i, j},
(10)

then, any two formally different representations of intersec-
tion points (resp. lines) refer to different intersection points
(resp. lines), and therefore all n intersection points (resp. lines)
are different from each other.

Proof. See Section VIII-A. ■

Next, the following Theorem 1 gives the conditions which
suffice to ensure the boundary of the region S in Eq. (8) is an
enclosing n sided convex polygon with the origin in its interior.
Intuitively, constraints Eq. (10) check each intersection point
Vij , i ∈ {1, . . . , n}, j = i⊕ against all its opposite (n − 2)
lines lk, k ∈ {1, . . . , n} − {i, j}.

Theorem 1. Assume that there are n ≥ 3 planar lines not
passing through the origin (0, 0), denoted by lk := akx +
bky−1 = 0, k ∈ {1, . . . , n}. If there are n intersection points
Vij := li ∩ lj , i ∈ {1, . . . , n}, j = i⊕, and the coefficients of
these lines satisfy Eq. (10), then the boundary of the region

S := {(x, y) :
n∧

k=1

akx + bky − 1 ≤ 0} generated by these

lines is the graph G formed by the sequence of intersection
points Sg := (V12, V23, . . . , V(n−1)n, Vn1, V12), which defines
an enclosing n sided convex polygon with the origin in its
interior.

Proof. See Section VIII-B. ■

So far, we have just derived constraints Eq. (9) and Eq. (10)
to ensure that the polygon of interest contains the origin
(0, 0). The following result extends the applicability of these
conditions to contain an arbitrary point.

Corollary 1. Assume that there are n ≥ 3 planar lines not
passing through the point (x̄, ȳ), denoted by lk := ak(x −
x̄) + bk(y− ȳ)− 1 = 0, k ∈ {1, . . . , n}. If constraints Eq. (9)
and Eq. (10) hold, then the boundary of the region S :=

{(x, y) :
n∧

k=1

ak(x−x̄)+bk(y− ȳ)−1 ≤ 0} generated by these

lines is the graph G formed by the sequence of intersection
points Sg := (V12, V23, . . . , V(n−1)n, Vn1, V12), which defines
an enclosing n sided convex polygon with the point (x̄, ȳ)
inside.

Proof. See Section VIII-C. ■

We finally conclude that, according to Corollary 1, Eq. (9)
and Eq. (10) are the constraints that we formulate for 2n
continuous variables ak, bk ∈ R, k ∈ {1, . . . , n}. For any
n ≥ 3 planar lines not passing through an arbitrary point, if
satisfying Eq. (9) and Eq. (10), we can guarantee that the

boundary of the region S := {(x, y) :
n∧

k=1

ak(x− x̄) + bk(y−

ȳ)− 1 ≤ 0} generated by these lines is an enclosing n sided
convex polygon with that point in its interior.

C. Constraints Relating Continuous and Discrete Variables

Recall that, a mesh of grid points is a map g given by
(xi, yj) = gij , i, j ∈ {1, . . . , N} as defined in Eq. (3), and
we have obtained a normalized weight matrix w := [wij ] such
that every grid point gij , i, j ∈ {1, . . . , N} has a normalized
weight wij , respectively, in Eq. (6). The index of the grid
point whose normalized weight is the greatest is denoted by
(̄i, j̄) := argmax

i,j
(w), and its coordinate is (xī, yj̄) := gī j̄ ,

which plays the role of (x̄, ȳ) in Section IV-B.
The following binary variables zij ∈ {0, 1} are defined so

that zij = 1 if and only if the grid point gij lies inside the
polygon obtained in Section IV-B. In other words,

zij = 1 =⇒
n∧

k=1

ak(xi − xī) + bk(yj − yj̄)− 1 ≤ 0, (11)

i, j ∈ {1, . . . , N},

zij = 0 =⇒
n∨

k=1

ak(xi − xī) + bk(yj − yj̄)− 1 > 0, (12)

i, j ∈ {1, . . . , N}.

To convert the logical constraints above into equivalent
algebraic constraints, we introduce new binary variables
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lkij ∈ {0, 1} such that lkij = 1 if and only if the grid point gij

lies on the inner side of the line lk. That is,

lkij = 1 =⇒ ak(xi − xī) + bk(yj − yj̄)− 1 ≤ 0,

i, j ∈ {1, . . . , N}, k ∈ {1, . . . , n},

lkij = 0 =⇒ ak(xi − xī) + bk(yj − yj̄)− 1 > 0,

i, j ∈ {1, . . . , N}, k ∈ {1, . . . , n},

where n ∈ {x ∈ N : x ≥ 3}. These can be formulated as
algebraic constraints via big-M representation [36] as

ak(xi − xī) + bk(yj − yj̄)− 1 ≤ M1
ijk(1− lkij) (13)

i, j ∈ {1, . . . , N}, k ∈ {1, . . . , n},

− ak(xi − xī)− bk(yj − yj̄) + 1 < M2
ijkl

k
ij (14)

i, j ∈ {1, . . . , N}, k ∈ {1, . . . , n},

where the parameters M1
ijk,M

2
ijk, i, j ∈ {1, . . . , N}, k ∈

{1, . . . , n} are sufficiently large constants. They are often set
specifically across different constraints, but in this paper, we
just need to choose a common constant for them.

The logical relationship between zij and lkij is

zij = 1 =⇒
n∑

k=1

lkij = n i, j ∈ {1, . . . , N},

zij = 0 =⇒
n∑

k=1

lkij ≤ (n− 1) i, j ∈ {1, . . . , N},

and these can be formulated as algebraic constraints
n∑

k=1

lkij ≥ nzij i, j ∈ {1, . . . , N}, (15)

n∑
k=1

lkij ≤ (n− 1) + zij i, j ∈ {1, . . . , N}, (16)

where n ∈ {x ∈ N : x ≥ 3}.
In this way, we have converted the original logical con-

straints Eq. (11) and Eq. (12), into equivalent algebraic
inequalities Eq. (13), Eq. (14), Eq. (15) and Eq. (16). These
constraints give the relation between 2n continuous variables
ak, bk ∈ R, k ∈ {1, . . . , n} and N2n binary variables
lkij ∈ {0, 1}, i, j ∈ {1, . . . , N}, k ∈ {1, . . . , n}, N2 binary
variables zij ∈ {0, 1}, i, j ∈ {1, . . . , N}.

D. Constraints on Discrete Variables

We would like to enforce that the grid point gī j̄ := (xī, yj̄)
lies inside the polygon obtained in Section IV-B. Recall that,
the binary variable zij = 1 if and only if the grid point gij

lies inside the polygon. Therefore, we impose that

zī j̄ = 1. (17)

In fact, Eq. (17) is unnecessary as (xī, yj̄) ∈ S := {(x, y) :
n∧

k=1

ak(x− xī) + bk(y− yj̄)− 1 ≤ 0} given by Corollary 1 in

Section IV-B, which means this grid point must lie inside the
polygon. However, we explicitly list it here for better clarity.

The convex polygon is intended to approximate the PRS. To
guarantee a level of confidence of the PRS, we impose that the
sum of the normalized weights wij of the grid points which
lie inside the polygon should be greater than this confidence
level α. That is,

N∑
i=1

N∑
j=1

wijzij ≥ α. (18)

Eq. (17) and Eq. (18) lead to two constraints that we formu-
late for N2 binary variables zij ∈ {0, 1}, i, j ∈ {1, . . . , N}.

E. Formulation of MINLP Optimization Framework

To solve the problem described in Section IV-A, we have

chosen the objective function min
N∑
i=1

N∑
j=1

zij in Eq. (7), and

introduced the following three types of decision variables with
n ∈ {x ∈ N : x ≥ 3} in Section IV-A:

• 2n continuous variables ak, bk ∈ R, k ∈ {1, . . . , n};
• N2n binary variables lkij ∈ {0, 1}, i, j ∈ {1, . . . , N}, k ∈

{1, . . . , n};
• N2 binary variables zij ∈ {0, 1}, i, j ∈ {1, . . . , N}.

Collect the previous constraints Eq. (9), Eq. (10) from
Section IV-B; Eq. (13), Eq. (14), Eq. (15), Eq. (16) from
Section IV-C; Eq. (17), Eq. (18) from Section IV-D.

We formally formulate the problem stated inSection II as
an MINLP optimization framework below. All coordinates
are expressed in a global coordinate system. If not specified,
∀i, j ∈ {1, . . . , N}, ∀k ∈ {1, . . . , n}.
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min

N∑
i=1

N∑
j=1

zij

s.t. aibj − biaj > 0, ∀i ∈ {1, . . . , n}, j = i⊕;

− ak (bi − bj) + bk (ai − aj) < aibj − biaj , ∀i ∈
{1, . . . , n}, j = i⊕, ∀k ∈ {1, . . . , n} − {i, j};

ak(xi − xī) + bk(yj − yj̄)− 1 ≤ M1
ijk(1− lkij), ∀i, j, k;

− ak(xi − xī)− bk(yj − yj̄) + 1 < M2
ijkl

k
ij , ∀i, j, k;

n∑
k=1

lkij ≥ nzij , ∀i, j;

n∑
k=1

lkij ≤ (n− 1) + zij , ∀i, j;

zī j̄ = 1;

N∑
i=1

N∑
j=1

wijzij ≥ α;

ak, bk ∈ R, ∀k;

lkij ∈ {0, 1}, ∀i, j, k;

zij ∈ {0, 1}, ∀i, j.
(19)

V. SOLUTION METHOD

In this section, we develop a heuristic algorithm to efficiently
solve the previous MINLP optimization.

A. MINLP Optimal Algorithm

Although the optimization framework Eq. (19) is an MINLP
problem with nonlinear constraints, all constraints except for
Eq. (9) and Eq. (10) are in fact linear ones. Fortunately, even
the quadratic constraints Eq. (9) and Eq. (10) are bilinear
constraints that only involve the product of disjoint pairs of
variables. Gurobi is well-suited for addressing such constraints.
It employs cutting planes and branching algorithm; see [37]
for more information. Leveraging this solver, Algorithm 2
finds an optimal solution to Eq. (19), which results in a convex
approximation of the PRS computed by Algorithm 1.

B. MINLP Heuristic Algorithm

However, Algorithm 2 is computationally expensive and
scales poorly with a large number of grid points. To address
this issue, we develop Algorithm 3 that can efficiently solve
Eq. (19) while ensuring accuracy. Algorithm 2 just serves as
a benchmark that provides the optimal solution to Eq. (19)

Algorithm 2 MINLP Optimal Algorithm
1: function MINLPSOLVER(α, g, w)
2: ī, j̄ = argmax(w)
3: Determine xī, yj̄ according to ī, j̄ and g
4: Formulate Eq. (19) for grid points g with weights w

given confidence level α
5: Implement cutting planes and branching algorithm

to solve Eq. (19) for ak, bk
6: return ak, bk, xī, yj̄

7: function FINDPOLYGON(g, w, α)
8: ak, bk, xī, yj̄ = MINLPSOLVER(α, g, w)
9: return ak, bk, xī, yj̄

10: FINDPOLYGON(g, w, α)

which is used only for comparison purposes. As explained
in Fig. 11, this algorithm performs weighted sampling based
on the KDE values to select representative grid points g′

from all grid points g. Unlike the original MINLP problem,
which uses all grid points g, a new MINLP problem can
be formulated using representative grid points g′. Then, the
cutting planes and branching algorithm built in Gurobi can be
applied to solve this newly formulated MINLP problem. As
illustrated in Fig. 12, the optimal solution to the new MINLP
problem is an approximation to the solution of the original
MINLP problem. By doing so, efficiency comes at the cost
of optimality. Since the size of g′ can be far less than g, the
new MINLP problem reduces the number of decision variables
and constraints, greatly contributing to reducing computational
time.

Fig. 11. Procedural difference between MINLP Heuristic and MINLP Optimal

In the pseudo-code of Algorithm 3, we use Ns to represent
the number of representative grid points g′. From Lines 1
through 6, we use the AES algorithm proposed by [38]
to randomly select Ns representative grid points g′ from
all N2 grid points g without replacement, according to
their normalized weights w. Recall that g is the output of
Algorithm 1 and w := [wij ] is obtained through Eq. (6). From
Line 7 through 9, the original weights w′ of representative grid
points g′ are re-normalized to ŵ′, so that their sum is equal
to one. The process of re-normalization is crucial to guarantee
the accuracy of the solution obtained from Algorithm 3, when
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Fig. 12. Results difference between MINLP Heuristic and MINLP Optimal

compared with the solution after implementing Algorithm 2.

Algorithm 3 MINLP Heuristic Algorithm
1: function WGTSAMP(g, w, Ns)
2: uij = random(0, 1)

3: kij = u
1/wij

ij

4: Take first Ns grids from g in descending order of kij
as representative grids g′

5: Take the weights of those Ns grids from w
as representative weights w′

6: return g′, w′

7: function NORMWGT(w′, Ns)
8: ŵ′ = w′ + ones(Ns) · (1− sum(w′))/Ns

9: return ŵ′

10: function MINLPSOLVER(g′, ŵ′, α, g)
11: ī, j̄ = argmax(ŵ′)
12: Determine xī, yj̄ according to ī, j̄ and g
13: Formulate Eq. (19) for grid points g′ with weights ŵ′

given confidence level α
14: Implement cutting planes and branching algorithm

to solve Eq. (19) for ak, bk
15: return ak, bk, xī, yj̄

16: function FINDPOLYGON(g, w, Ns, α)
17: g′, w′ = WGTSAMP(g, w, Ns)
18: ŵ′ = NORMWGT(w′, Ns)
19: ak, bk, xī, yj̄ = MINLPSOLVER(g′, ŵ′, α, g)
20: Determine the polygon S according to ak, bk, xī, yj̄
21: return S

22: FINDPOLYGON(g, w, Ns, α)

VI. MAIN RESULTS

In this section, we conduct comprehensive case studies to
compare the performance of the MINLP Optimal algorithm (Al-
gorithm 2), and the MINLP Heuristic algorithm (Algorithm 3),
with the Bounding Box algorithm introduced in [28], as well
as the impact of different parameters on the performance of
the algorithms. We also discuss the robustness of the MINLP
Heuristic algorithm. The tests were implemented in Python

3.9 and on an Intel(R) Core(TM) i9-12900KF, 3187 Mhz, 16
Core(s), 24 Logical Processor(s) Desktop with 64GB RAM.

Case studies are divided into two stages:
1) Solution stage: According to KDE values and the

PRS obtained from a collection of M data samples running
Algorithm 1, we formulate an MINLP problem. Then, MINLP
Optimal and MINLP Heuristics are implemented respectively
to find convex approximations of the PRS. As a comparison,
the Bounding Box algorithm is applied to find a convex
quadrilateral bounding the PRS;

2) Testing stage: Given the obtained convex polygon in
the previous stage, we can generate a new collection of Ntest
(Ntest ≫ M ) data samples, and evaluate the ratio of the number
of data samples that fall inside the polygon to the total number
of data samples generated. As Ntest increases, the ratio will
converge to the true probability of the system state lying inside
the polygon.

A. Cases Settings

1) Case I: In this case, we consider a Dubins vehicle model
moving on a plane. The speed of the vehicle obeys a truncated
Gaussian distribution v ∼ N (µ1, σ1) with µ1 = 190 km/h
and σ1 = 5km/h, and the speed falls inside the interval
[165, 220] km/h. The heading angle of the vehicle obeys
another truncated Gaussian distribution θ ∼ N (µ2, σ2) with
µ2 = 10degs and σ2 = 30degs, and the heading angle falls
inside the interval [−50, 70] degs.

The position xk :=
[
xk, yk

]⊤
of the vehicle at time k can

be modeled by a discrete-time dynamic system[
xk

yk

]
=

[
xk−1

yk−1

]
+

[
cos θ
sin θ

]
v∆t,

where xk−1 :=
[
xk−1, yk−1

]⊤
is the position of the vehicle at

time k − 1, and the speed v and heading angle θ are assumed
to be constant during a time interval ∆t = 1 s. Due to the
uncertainties arising from v and θ of the vehicle, the position
xk is a random vector that obeys a non-Gaussian distribution,
which we call a fan-shaped distribution. The shadowed region
in Fig. 13 indicates the reachable set of the position of the
vehicle at a time point.

Fig. 13. Reachable set of the position of a vehicle at a time point

2) Case II: In this case, we display a scatter plot of the
possible positions (data samples) [x, y]⊤ of a vehicle on the
plane at a time point, which is generated by the marginal
histograms for x and y respectively. As shown in Fig. 14, the
position of the vehicle at that time point obeys a bimodal
distribution which is non-Gaussian.

In the following, the bandwidth matrix H in Eq. (2) is set to[
0.2 0
0 0.2

]
, a common constant 104 is chosen for the parameters
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Fig. 14. Joint bimodal distribution generated by two marginal histograms

M1
ijk,M

2
ijk in Eq. (13) and Eq. (14), and the number of data

samples is M = 1000. The setting below is chosen as a
baseline: The number of sides is n = 4, the confidence level is
α = 90%, the number of grid points used by MINLP Optimal
is N2 = 202, and the number of grid points used by MINLP
Heuristic is Ns = 70 for Case I and Ns = 60 for Case II. In
the following figures and tables, the baseline is marked with
the symbol “*”.

B. Different Numbers of Sides

In this part, we compare the performance of different
algorithms for different numbers of polygon sides: n = 3, 4, 5.
The other parameters are the same as in the baseline.

The results are shown in Fig. 15 and Table I. Note that
changing of the number of sides n is only applicable for MINLP
Optimal and MINLP Heuristic. For MINLP Optimal or MINLP
Heuristic, as n increases from 3 to 5, the area of the polygon
becomes smaller, while the ratio is just slightly different and
always closer to the confidence level α. This suggests that
the results of both algorithms become less conservative while
ensuring accuracy. However, the associated computational time
increases as the number of decision variables and constraints in
Eq. (19) increases with an increase on n. To achieve a balance
between optimality and computational efficiency, we set n = 4.

When n = 4, the area and ratio of either MINLP Optimal
or MINLP Heuristic are much smaller than those of the
Bounding Box algorithm, which suggests that the polygons
obtained by both MINLP Optimal and MINLP Heuristic
algorithms are more tight and accurate than the Bounding Box.
This clearly benefits real motion planning. When considering
collision avoidance between the vehicle and an obstacle, a
less conservative convex approximation of the PRS allows a
larger feasible search area which may provide a better-planned
trajectory. Plus, the computational time of MINLP Heuristic
is far less than MINLP Optimal (0.801 s < 70.5 s for Case I
and 0.361 s < 18.6 s for Case II), while their results of area
and ratio are still similar. This demonstrates the computational
efficiency of MINLP Heuristic while ensuring accuracy, making
online implementation feasible.

As stated in Section V, the polygon obtained by MINLP
Optimal is optimal in the sense that it has a minimum area
without violating constraints. However, for some cases in

Table I, the area of MINLP Heuristic (e.g. 1807.9m2) may
be slightly less than MINLP Optimal (e.g. 1827.0m2). The
approximation error comes from the re-normalization with the
newly selected Ns grid points g′. The polygon obtained by
MINLP Heuristic is an optimal solution to a new MINLP
problem based on those selected Ns grid points, which is also
an approximation to the original MINLP problem involving N2

grid points. Since the original and new MINLP problems have
different grid settings, there is a chance that the polygon area
of MINLP Heuristic is less than MINLP Optimal. However,
those errors are relatively small according to our experiments.

C. Different Numbers of Grid Points

Here, we compare the performance of the algo-
rithms when considering different numbers of grid points:
N2 = 102, 202, 302, 402. For MINLP Heuristic, Ns =
20, 70, 160, 280 grid points are randomly selected for Case I
and Ns = 15, 60, 135, 240 grid points for Case II, respectively.
The other parameters are the same as in the baseline.

From Fig. 16 and Table II, we can draw some conclusions as
follows. The results obtained by the implementation of all three
algorithms given in Fig. 16a and Fig. 16b are visually very
different from the other subfigures in Fig. 16. This is because
when the number of grid points is too small (N2 = 102), KDE
can not approximate PDF well. As indicated in Table II, for
every algorithm, as N2 ranges from 202 to 402, the performance
in ratio and area slightly improves. However, as N2 increases,
the increase in the number of decision variables and constraints
leads to a significant increase in computational time. As shown
in Table II, the computational time of MINLP Heuristic goes
from 0.801 s to 125.5 s for Case I and from 0.361 s to 23.8 s
for Case II. Thus, there is a slight improvement in accuracy
and optimality, but at huge cost of efficiency. To reach a
compromise, the number of grid points can be chosen as
N2 = 202.

When N2 is fixed to 202, the area and ratio of MINLP
Optimal and MINLP Heuristic are much smaller than those
of the Bounding Box algorithm, indicating MINLP Optimal
and MINLP Heuristic significantly outperform Bounding Box
in terms of optimality and accuracy. Further, for MINLP
Optimal and MINLP Heuristic, their results of ratio and
area are quite similar. However, the computational time of
MINLP Heuristic greatly outperforms MINLP Optimal, i.e.,
0.801 s < 70.5 s for Case I and 0.361 s < 18.6 s for Case II,
demonstrating the efficiency of MINLP Heuristic. Therefore,
MINLP Heuristic can guarantee near-optimality, accuracy, and
efficiency simultaneously, which makes it very well suited for
real-time implementation.

D. Different Confidence Levels

In this part, we compare the performance of the algorithms
relative to different confidence levels: α = 90%, 95%, and 99%.
The other parameters are the same as in the baseline.

In Fig. 17 and Table III, for both Case I and II, as α increases,
the area of the polygon obtained by MINLP Optimal, MINLP
Heuristic or Bounding Box respectively increases while the
computational time of each algorithm slightly fluctuates.
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(a) Case I: n = 3 (b) Case II: n = 3

(c) Case I: n = 4 * (d) Case II: n = 4 *

(e) Case I: n = 5 (f) Case II: n = 5

Fig. 15. Comparisons of different numbers of sides n (For Bounding Box n ≡ 4)

TABLE I
COMPARISONS OF DIFFERENT NUMBERS OF SIDES n (FOR BOUNDING BOX n ≡ 4)

# Sides n Algorithm Case I Case II

Ratio Area (m2) Time (s) Ratio Area (m2) Time (s)

MINLP Optimal 90.1% 1835.9 27.5 89.1% 4220.7 13.7
3 (Triangle) MINLP Heuristic 90.2% 1911.9 0.533 90.1% 4706.6 0.209

Bounding Box N/A N/A N/A N/A N/A N/A

MINLP Optimal 91.5% 1827.0 70.5 91.4% 3570.5 18.6
4 (Quadrilateral) * MINLP Heuristic 90.7% 1807.9 0.801 90.6% 3457.1 0.361

Bounding Box 97.9% 3235.1 0.216 97.7% 4987.2 0.189

MINLP Optimal 89.7% 1667.9 316.3 91.3% 3511.6 27.1
5 (Pentagon) MINLP Heuristic 90.2% 1721.9 1.145 90.5% 3401.7 0.525

Bounding Box N/A N/A N/A N/A N/A N/A
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(a) Case I: N2 = 102 (b) Case II: N2 = 102

(c) Case I: N2 = 202 * (d) Case II: N2 = 202 *

(e) Case I: # N2 = 302 (f) Case II: N2 = 302

(g) Case I: N2 = 402 (h) Case II: # N2 = 402

Fig. 16. Comparisons of different numbers of gird points N2
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TABLE II
COMPARISONS OF DIFFERENT NUMBERS OF GRID POINTS

# Grid Points N2 Algorithm Case I Case II

Ratio Area (m2) Time (s) Ratio Area (m2) Time (s)

MINLP Optimal 87.2% 1703.6 0.321 82.2% 3784.7 0.082
102 MINLP Heuristic 90.2% 1908.7 0.064 92.6% 4110.5 0.015

Bounding Box 97.9% 3257.2 0.209 99.6% 6318.8 0.184

MINLP Optimal 91.5% 1872.0 70.5 91.4% 3570.5 18.6
202 * MINLP Heuristic 90.7% 1807.9 0.801 90.6% 3457.1 0.361

Bounding Box 97.9% 3235.1 0.216 97.7% 4987.2 0.189

MINLP Optimal 91.4% 1829.1 1150.2 92.0% 3578.3 362.9
302 MINLP Heuristic 90.4% 1755.9 8.9 91.8% 3443.1 6.9

Bounding Box 97.7% 3157.7 0.225 97.6% 4893.5 0.193

MINLP Optimal 91.3% 1827.0 2360.1 91.4% 3554.8 1237.4
402 MINLP Heuristic 90.1% 1721.1 125.5 90.9% 3425.0 23.8

Bounding Box 97.1% 3030.2 0.239 97.3% 4722.6 0.211

(a) Case I: α = 90% * (b) Case II: α = 90% *

(c) Case I: α = 95% (d) Case II: α = 95%

(e) Case I: α = 99% (f) Case II: α = 99%

Fig. 17. Comparisons of different confidence levels α
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TABLE III
COMPARISONS OF DIFFERENT CONFIDENCE LEVELS

Confidence Level α Algorithm Case I Case II

Ratio Area (m2) Time (s) Ratio Area (m2) Time (s)

MINLP Optimal 91.5% 1872.0 70.5 91.4% 3570.5 18.6
90% * MINLP Heuristic 90.7% 1807.9 0.801 90.6% 3457.1 0.361

Bounding Box 97.9% 3235.1 0.216 97.7% 4987.2 0.189

MINLP Optimal 95.7% 2359.6 53.5 96.1% 4312.6 8.8
95% MINLP Heuristic 96.1% 2424.7 0.417 96.2% 4471.5 0.112

Bounding Box 99.4% 3709.1 0.243 99.0% 5613.5 0.235

MINLP Optimal 99.9% 4350.6 50.6 99.9% 7223.7 7.8
99% MINLP Heuristic 99.9% 4443.5 0.377 99.9% 7460.1 0.090

Bounding Box 100% 6314.8 0.303 100% 9539.5 0.271

When α is fixed, the area of the polygon obtained by MINLP
Optimal is far less than that of the Bounding Box. This means
that the polygon obtained by MINLP Optimal is far less
conservative than Bounding Box. However, the computational
time of implementing MINLP Optimal is much longer than
Bounding Box. That is, MINLP Optimal is inefficient to
perform the online evaluation. Instead, the area of the polygon
obtained by MINLP Heuristic is close to MINLP Optimal while
the computational time of implementing MINLP Heuristic is
short enough. Hence, MINLP Heuristic runs much faster than
MINLP Optimal while ensuring accuracy.

E. Robustness of the MINLP Heuristic Algorithm

As indicated in Algorithm 3, every time we run MINLP
Heuristic, we apply a weighted sampling to select representative
grid points g′ out of the grid points g. Due to the randomness of
weighted sampling, the selected grid points g′ typically differ
every time, and the polygon obtained by MINLP Heuristic
changes every time it is applied. This leads to the following
concerns regarding the robustness of MINLP Heuristic. 1)
Space: this refers to whether the convex polygon obtained
significantly differs every time; 2) Time: this refers to whether
the computational time spent significantly differs every time.
A major difference would mean that MINLP Heuristic is not
robust enough for applications in real scenarios.

The similarity between two polygons can be quantified by
means of the Jaccard distance. Formally, for any two sets A
and B, Jaccard distance is defined as d(A,B) = 1− Card(A∩B)

Card(A∪B)
[33], where the operation Card finds the cardinality of a set. A
smaller Jaccard distance means the two sets are more similar
to each other.

We analyze the robustness of MINLP Heuristic with respect
to the varying number Ns of grid points g′ used by MINLP
Heuristic for Cases I and II mentioned above. For either Case
I or Case II, all the parameters, except for the number Ns, are
constant and the same as in the respective baselines.

For either Case I or Case II, given a fixed number Ns,
we run MINLP Optimal once to obtain a constant optimal
polygon and run MINLP Heuristic ten times to obtain ten
approximate polygons which may differ every time. We evaluate
the Jaccard distance between every approximate polygon
and the optimal polygon and obtain ten distances eventually.
In addition, we evaluate the computational time of running

(a) Space robustness

(b) Time robustness

Fig. 18. Robustness analysis of MINLP Heuristic algorithm

MINLP Heuristic every time. We repeat the operation above for
Ns = 50, 60, 70, 80, 90, respectively. The results are depicted
in Fig. 18. As illustrated in Fig. 18a, for both cases, when Ns

is too small, like Ns = 50, different Jaccard distances fluctuate
significantly around the average value, suggesting that MINLP
Heuristic has poor robustness under this circumstance. As Ns

increases from 50 to 90, the average Jaccard distance decreases
from 0.28, 0.21 to 0.12, 0.10, respectively. This means the
approximate polygon obtained by MINLP Heuristic becomes
more near-optimal with respect to an increasing Ns. Moreover,
the variance of ten Jaccard distances also decreases as Ns

grows. That is, MINLP Heuristic becomes more robust with
respect to the increase of Ns. As suggested in Fig. 18b, as
Ns increases, the average computational time increases from
0.09 s to 3.1 s for Case I, and from 0.16 s to 2.81 s for Case
II. Additionally, as Ns grows, the variance of computational
time increases.

In summary, the robustness of MINLP Heuristic comes at
the cost of losing computational efficiency. For the case studies
under consideration, a balance is achieved for Ns = 70 for Case
I or Ns = 60 for Case II. This makes the MINLP Heuristic
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robust enough and its applications promising.

VII. CONCLUSION

This paper proposes an efficient convex approximation of the
PRS of an uncertain dynamic system. For arbitrary unknown
uncertainties, especially unbounded ones, the notion of the
PRS is introduced as an extension of the traditional reachable
set, connecting chance constraint formulation and reachability
analysis. In this paper, the PRS is obtained through a data-driven
approach employing a KDE method. FFT is then customized to
accelerate the computation of KDE to make it computationally
attractive. The irregularity or non-convexity of the PRS refrains
its use in optimal design applications. To address this issue,
we formulate a MINLP problem whose solution accounts for a
convex approximation of the PRS. We then develop a MINLP
Heuristic algorithm to solve it. Comprehensive case studies
demonstrate that our proposed algorithm enjoys the benefits
of accuracy, efficiency, near-optimality, as well as robustness
while providing a convex approximation for the PRS.

This work is limited to a 2D system. Future work will be
devoted to solving higher dimensional problems, and applying
the results to the design of safety-critical real-time motion
planning algorithms for uncertain robotic systems.

VIII. APPENDIX

A. Proof of Lemma 1

I) First, we prove that any two formally different represen-
tations of lines refer to different lines.

Given n ≥ 3 planar lines not passing through the origin
lk := akx + bky − 1 = 0, k ∈ {1, . . . , n}, we can construct
a sequence of lines (l1, l2, . . . , ln, l1). Two formally different
lines li, lj in the sequence are defined to be consecutive if
and only if j = i⊕ ∨ j = i⊖. Since there are n intersection
points Vij := li ∩ lj , i ∈ {1, . . . , n}, j = i⊕, it follows that
li ̸= lj , i ∈ {1, . . . , n}, j = i⊕. Thus, any two formally
different lines consecutive in the sequence are indeed different
from each other.

For n = 3, the sequence of lines is (l1, l2, l3, l1). Since
any two formally different lines in the sequence (l1, l2, l3, l1)
are consecutive, thus l1, l2, l3 are indeed different from each
other. For n ≥ 4, there are at least one pair of formally
different lines not consecutive in the sequence. We have already
shown that any two formally different lines consecutive in the
sequence are indeed different from each other, and therefore
it remains to show that any two formally different lines not
consecutive in the sequence are also indeed different from
each other, given the conditions of this lemma. We prove
this by contradiction. Suppose that lu, lv, u ∈ {1, . . . , n}, v ∈
{1, . . . , n} − {u⊖, u, u⊕} are two formally different lines not
consecutive in the sequence but are indeed an identical line.
Then Vv⊖v and Vvv⊕ are both on the line lu, which means

− au (bv⊖ − bv) + bu (av⊖ − av)− (av⊖bv − bv⊖av) = 0,

− au (bv − bv⊕) + bu (av − av⊕)− (avbv⊕ − bvav⊕) = 0.
(20)

However, since v /∈ {u⊖, u, u⊕}, it follows that the subscript
of Vv⊖v is formally different from Vu⊖u and Vuu⊕ , and the

subscript of Vvv⊕ is also formally different from Vu⊖u and
Vuu⊕ . Thus, since the constraints Eq. (10) are satisfied, we
obtain two instances

− au (bv⊖ − bv) + bu (av⊖ − av)− (av⊖bv − bv⊖av) < 0,

− au (bv − bv⊕) + bu (av − av⊕)− (avbv⊕ − bvav⊕) < 0,

which contradicts Eq. (20).
Thus, if constraints Eq. (9) and Eq. (10) are satisfied, any

two formally different lines are indeed different from each
other.

II) Next, we show that if there are n intersection points
Vij := li ∩ lj , i ∈ {1, . . . , n}, j = i⊕ (namely, Dij := aibj −
biaj > 0, i ∈ {1, . . . , n}, j = i⊕ according to Eq. (9)), and
the constraints Eq. (10) are satisfied, then any two formally
different intersection points are indeed different from each
other.

We can prove this by contradiction. Assume that there
are two formally different intersection points Vij , Vuv, i ∈
{1, . . . , n}, j = i⊕, u ∈ {1, . . . , n} − {i}, v = u⊕ which are
indeed an identical intersection point. Since n ≥ 3, it follows
that (u ̸= i ∧ u ̸= j) ∨ (v ̸= i ∧ v ̸= j), and without loss of
generality, we assume v ̸= i ∧ v ̸= j. Thus, the constraints
Eq. (10) apply to Vij and lv , which yields an instance

−av (bi − bj) + bv (ai − aj)− (aibj − biaj) < 0. (21)

However, since Vij , Vuv are indeed an identical intersection
point, Vij is on the line lv , meaning that

−av (bi − bj) + bv (ai − aj)− (aibj − biaj) = 0,

which contradicts Eq. (21).
Combining I) and II), we conclude that if constraints

Eq. (9) and Eq. (10) are satisfied, any two formally different
representations of intersection points (resp. lines) refer to
different intersection points (resp. lines), and therefore all n
intersection points (resp. lines) are indeed different from each
other.

B. Proof of Theorem 1

I) Since there are n ≥ 3 intersection points Vij := li∩lj , i ∈
{1, . . . , n}, j = i⊕, we can enumerate them in a sequence
of intersection points Sg := (V12, V23, . . . , V(n−1)n, Vn1, V12).
According to Lemma 1, since the coefficients of these lines
satisfy constraints Eq. (9) and Eq. (10), then any two formally
different intersection points (resp. lines) are indeed different
from each other.

II) We can also construct a finite sequence of symbols
Ss := (“V12”, “V23”, . . . , “V(n−1)n”, “Vn1”, “V12”). In Ss, 1)
since n ≥ 3, there are at least three formally different symbols
“V12”, “V23” and “V31”; 2) No symbols appear more than once
except for the case in which only the first symbol “V12” and last
symbol “V12” are formally identical. Therefore, Definition 9
applies and Ss is formally enclosing.

Consider a map ftag from Ss to Sg given by the operation
of labelling the intersection points, i.e., Vij := li ∩ lj , i ∈
{1, . . . , n}, j = i⊕. It can be verified that ftag is injective,
surjective and order-preserving. The map ftag also satisfies
Condition 4) in Definition 10. This is because in Ss, for any
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two consecutive symbols “Vi⊖i” and “Vii⊕”, and any third
symbol “Vuv” which is formally different from each of “Vi⊖i”
and “Vii⊕”, according to Eq. (10) we obtain

− ai (bu − bv) + bi (au − av)− (aubv − buav) ̸= 0,

u /∈ {i⊖, i}, v = u⊕,

which means that the intersection point Vuv is not on the line
li. According to I), since formally different symbols “Vi⊖i”
and “Vii⊕” refer to different intersection points Vi⊖i and Vii⊕ ,
thus these two intersection points determine a non-degenerate
line segment. Further, the line segment determined by these
two points is a segment of the line li. Hence, the intersection
point Vuv that the third symbol “Vuv” refers to is not on the
edge (Vi⊖i, Vii⊕). In summary, the map ftag satisfies all the
conditions in Definition 10 and therefore is an isomorphism
type A.

According to Remark 1, since Ss is formally enclosing, and
ftag is an isomorphism type A, it follows that the graph G
formed by Sg is enclosing.

III) Since n ≥ 3, the number of formally different symbols
in Ss is n ≥ 3.

As concluded in II), the map ftag is injective, surjective,
and order-preserving. The map ftag also satisfies Condition 4)
in Definition 12. This is because, for any three consecutive
symbols “Vi⊖i”, “Vii⊕”, “Vi⊕i⊕⊕” in Ss, applying Eq. (10)
yields

−ai (bi⊕ − bi⊕⊕)+bi (ai⊕ − ai⊕⊕)−(ai⊕bi⊕⊕−bi⊕ai⊕⊕) ̸= 0,

which means that the intersection point Vi⊕i⊕⊕ is not on the
line li. From I), since formally different symbols “Vi⊖i” and
“Vii⊕” refer to different intersection points Vi⊖i and Vii⊕ ,
then Vi⊖i and Vii⊕ are different from each other. Further, the
intersection point Vi⊖i and Vii⊕ are on the line li. Hence, the
three intersection points Vi⊖i, Vii⊕ , Vi⊕i⊕⊕ are not collinear.
In summary, the map ftag satisfies all the conditions in
Definition 12 and therefore is an isomorphism type B.

According to Remark 2, since ftag is an isomorphism type
B, and there are n ≥ 3 formally different symbols in Ss, it
follows that the graph G formed by Sg is non-degenerate.

IV) We have shown that the graph G formed by Sg is an
enclosing n sided polygon. For a line lk, k ∈ {1, . . . , n}, once
the constraints Eq. (10) are satisfied, it follows that



−ak (bi − bj) + bk (ai − aj)− (aibj − biaj) < 0,

i ∈ {1, . . . , n} − {k⊖, k}, j = i⊕,

−ak (bi − bj) + bk (ai − aj)− (aibj − biaj) = 0,

i ∈ {k⊖, k}, j = i⊕.

(22)

Since there are n intersection points Vij , i ∈ {1, . . . , n}, j =
i⊕, according to Eq. (9), we have Dij := aibj − biaj > 0, i ∈

{1, . . . , n}, j = i⊕. Thus, the inequalities Eq. (22) can be
transformed to

ak
−(bi−bj)

Dij
+ bk

(ai−aj)
Dij

− 1 < 0,

i ∈ {1, . . . , n} − {k⊖, k}, j = i⊕,

ak
−(bi−bj)

Dij
+ bk

(ai−aj)
Dij

− 1 = 0,

i ∈ {k⊖, k}, j = i⊕,

(23)

which means that all n intersection points Vij , i ∈
{1, . . . , n}, j = i⊕ are on the same side of the line lk. There-
fore, in Sg , for any two consecutive intersection points Vij , Vuv

where i ∈ {1, . . . , n} − {k⊖}, j = i⊕, u = i⊕, v = i⊕⊕, we
can define a set constructed by the convex combination of Vij

and Vuv excluding these two boundary points, which is{
t(−bi − bj

Dij
,
ai − aj
Dij

) + (1− t)(−bu − bv
Duv

,
au − av
Duv

) :

t ∈ R ∧ 0 < t < 1
}
.

It is a subset of the half plane {(x, y) : akx+ bky−1 < 0}. In
other words, the edge (Vii⊕ , Vi⊕i⊕⊕), i ∈ {1, . . . , n} − {k⊖},
is on the strict inner side of the line lk. This is because

ak

(
t
− (bi − bj)

Dij
+ (1− t)

− (bu − bv)

Duv

)
+

bk

(
t
(ai − aj)

Dij
+ (1− t)

(au − av)

Duv

)
− 1

= t

(
ak

− (bi − bj)

Dij
+ bk

(ai − aj)

Dij

)
+

(1− t)

(
ak

− (bu − bv)

Duv
+ bk

(au − av)

Duv

)
− 1

< 0,

(24)

according to Eq. (23). For the polygon G formed by Sg,
according to Eq. (24), we have shown that every edge
(Vii⊕ , Vi⊕i⊕⊕), i ∈ {1, . . . , n} − {k⊖} of the polygon is on
the same side of the line lk, k ∈ {1, . . . , n} that the edge
(Vk⊖k, Vkk⊕), k ∈ {1, . . . , n} defines. Recall the definition of
a convex polygon: For each edge of the polygon, all the other
edges are on the same side of the line that the edge defines.
Therefore, the polygon G formed by Sg is a convex polygon.

V) Recall that for an arbitrary point (u, v) and an enclosing
n sided convex polygon determined by n lines lk := akx +

bky − 1 = 0, k ∈ {1, . . . , n}, if
n∧

k=1

aku+ bkv − 1 < 0 holds,

then the point (u, v) lies inside the polygon. We have shown
above that if constraints Eq. (9) and Eq. (10) are satisfied, then
the graph G formed by Sg is an enclosing n sided convex
polygon. Since ak · 0 + bk · 0− 1 ≡ −1 < 0, k ∈ {1, . . . , n},
the origin (0, 0) lies inside the polygon G formed by Sg .

From the above, we conclude that if constraints Eq. (9)
and Eq. (10) are satisfied, then the graph G formed by Sg is
an enclosing n sided convex polygon with the origin (0, 0)
inside. For such n ≥ 3 planar lines lk := akx + bky − 1 =
0, k ∈ {1, . . . , n} not passing through the origin satisfying
constraints Eq. (9) and Eq. (10), the boundary of the region S
generated by these lines, as defined in Eq. (8), is exactly the
graph G formed by Sg . Since that graph G is an enclosing n
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sided convex polygon with the origin in its interior under the
conditions of Eq. (9) and Eq. (10), it follows that the boundary
of the region S generated by these lines is an enclosing n
sided convex polygon with the origin in its interior.

C. Proof of Corollary 1

This follows from the application of an affine coordinate
transformation using (x̄, ȳ). More precisely, given coordinates
x-y, consider the transformation (xnew, ynew) = (x− x̄, y − ȳ).
In the new coordinates, the origin (0new, 0new) is located at
(x̄, ȳ). In addition, the representation of lines changes to{

a(x− x̄) + b(y − ȳ)− 1 = 0 : a, b ∈ R ∧ a2 + b2 ̸= 0
}
.

From Theorem 1 it follows that Eq. (9) and Eq. (10) are
sufficient to guarantee that the boundary of the region S :={
(xnew, ynew) :

n∧
k=1

akx
new + bky

new − 1 ≤ 0

}
is an enclosing

n sided convex polygon with the origin (0new, 0new) in its
interior. By changing back to the original coordinate system,
the result follows.
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