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This paper introduces a novel stochastic approach for the ground-delay-program planning under uncertainty,

using chance-constrainedoptimization.Themajoradvantage of the chance-constrainedmodel is the ability toprovide

robust solutions with user-defined service level. The approach is compared with the Ball et al. (“A Stochastic Integer

Programwith Dual Network Structure and Its Application to the Ground-Holding Problem,”Operations Research,

Vol. 51, No. 1, Feb. 2003, pp. 167–171) model for selecting planned airport acceptance rates for airports in a

metroplex, which is an interdependent system in close geographic proximity. The approaches were evaluated using

real flight schedules and landing-capacity data from the New York City metroplex airports. Although the Ball et al.

model was found to be more efficient, the chance-constrained model shows the ability to provide a quantized way to

balance the solution’s robustness and potential cost by choosing a proper service level. Moreover, the parallel-

computing framework was demonstrated to be helpful in improving the computing efficiency, which suggests that

deployingmore computing resources would help solve a large-scale planning problem under uncertainty in the same

framework.

I. Introduction

T HE goal of air-traffic-management system is to balance traffic
demand with system capacity through a variety of traffic

management initiatives (TMIs). The ground-delay program (GDP) is
one of the most effective strategic TMIs used to alleviate congestion
costs, and it ensures safe and efficient air traffic [1]. In a GDP, flights
are held on the ground at their origin airports when there is an
expected reduction of landing capacity at the destination airport. The
landing capacity is also referred to as airport acceptance rate (AAR),
which describes the number of arrivals an airport is capable of
accepting per hour. The assigned ground delay helps absorb airborne
delay, such that the traffic supply–demand balance ismaintainedwith
cheaper and safer delay cost.
With rapid growth of air traffic, the airports in a metropolitan area

cannot be considered as separated entities, but rather as an
interdependent system, known as a metroplex [2]. A metroplex
phenomenon is an interaction between two or more airports in close
geographic proximity [3]. Adverse weather usually affects multiple
airports in a metroplex simultaneously, such that the joint AARs of a
metroplex are reduced, because adverse weather, such as fog, snow,
wind, and reduced visibility, may require greater spacing between
flights [4,5]. The imperfect weather forecast brings uncertainty into
the GDP planning. Decisions made under uncertainty can cause
airborne delays for multiple airports simultaneously, which greatly
lower the efficiency in those busymetroplex airspace. This highlights
the importance of addressing weather uncertainty in the GDP
planning in a metroplex to mitigate congestions.
There has been considerable research on how to allocate ground

delays efficiently and equitably. The first effort to tackle GDP dates
back to 1987, when Odoni was among the first to describe the
problem [6]. Following this, several deterministic models for the
single-airport ground-holding problem (SAGHP) were developed
[7,8]. The first stochastic models for SAGHP were introduced by
Richetta and Odoni, which consider the uncertainty in AAR using
stochastic integer programming under static [9] and partially
dynamic [10] settings. Later, the Federal Aviation Administration

implemented a new GDP paradigm, known as collaborative decision
making (CDM), in which the airlines have more autonomy about
their schedules. Under the CDM paradigm, the arrival slots are first
allocated to individual flights based on the planned AARs (PAARs)
[11]. Then, the airlines are allowed to exchange the arrival slots
among themselves, which is the key feature of CDM [12].
Many models were proposed to assist the implementation of GDP

under CDM. Ball et al. formulated an aggregative static stochastic
model, which solves for optimal PAARs during different time
intervals [13]. However, once the ground-holding strategies were
decided “once and for all” at the beginning of planning time horizon,
they could not be revised even for flights that have yet to depart.
Mukherjee andHansen improved this dynamicmodel by allowing for
ground-holding revisions contingent on updated scenario realiza-
tions [14]. In all of the aforementioned models, the uncertainty in
AAR was represented through a finite number of scenarios arranged
in a probabilistic decision tree. As time progressed, branches of the
tree were realized, resulting in better information about future
capacities [15]. Unfortunately, the probabilistic-scenario-tree
approach suffers significantly from the practical difficulty of not
knowing the exact scenarios. Furthermore, it generally becomes
intractable quickly as the number of scenarios increases, thereby
posing substantial computational challenges.
This paper proposes an alternative method to incorporate

probabilistic information instead of a scenario tree, called chance
constraints. The idea is to constrain the chance of a constraint
violation, given probabilistic information about future state
disturbances. The major advantage of a chance-constrained model
is the ability to provide robust solutions with a user-defined service
level, in which the service level represents the chance of the
constraints not being violated. The service level can be defined by the
air-traffic authority or airlines. First, a chance-constrained model is
developed based on the Ball et al. [13] model to provide a robust
optimal PAAR with a required service level. To efficiently solve the
chance-constrained optimization problem, a convex-approximation-
based approach is proposed based on the Bernstein polynomial. To
evaluate the chance-constrainedmodel, both the Ball et al. model and
the chance-constrained model are applied to a metroplex ground-
delay problem (MGDP). The evaluation used real flight schedules
from the NewYork City (NYC) metroplex airports: John F. Kennedy
International (JFK), Newark Liberty International (EWR), and
LaGuardia (LGA) Airports.
The rest of this paper is organized as follows. Section II introduces

the chance-constrained model. Section III introduces a polynomial-
approximation-based approach to overcome the limitation of the
sampling method. Section IV sets up the distribution and flight plan
for the experiment. Section V presents the experiment results.
Section VI concludes this paper.
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II. Chance-Constrained Modeling

The proposed chance-constrained model is derived based on a

previous static model for the SAGHP [13]. First, the static model is

modified to schedule PAARs for all airports in a metroplex

simultaneously. Then, the same problem is solved by the newly

proposed chance-constrained model for comparison.

A. Static Model

The static model was introduced by Ball et al. in 2003 [13], which

is a static approach to choosing PAARs under CDM procedures. It is

static because decisions are made based only on the current state and

do not take into account updated information [16]. We choose to

modify the Ball et al. model to consider multi-airports in a

metropolitan area (e.g., NYC metroplex). The formulation is

min
XT
t�1

XM
i�1

�
cgY

i
t �

XQ
q�1

pqcaZ
i
t;q

�

subject to

Xi
t � Yi

t − Yi
t−1 � Sit t � 1; : : : ; T � 1; i � 1; : : :M

Zi
t−1;q � Xi

t − Zi
t;q ≤ Di

t;q t � 1; : : : ; T � 1;

i � 1; : : : ;M; q � 1; : : : ; Q

Zi
0;q � Zi

T�1;q � 0

Yi
0 � Yi

T�1 � 0

Xi
t; Y

i
t; Z

i
t;q ≥ 0 (1)

The difference is that multiple SAGHPs are combined together by

sampling the landing capacity of each airport Di
t;q simultaneously

from a joint distribution. To present the joint landing-capacity

distribution, the Ball et al. [13]model chooses to sample a finite set of

landing-capacity scenarios with associated probabilitiespq, in which

each scenario q represents one possible evolution of landing capacity
over time. The parameter Sit is the number of scheduled arrival flight

for interval t, airport i. The ground and air delays are represented by
Yi
t and Z

i
t;q, respectively. All flights are enforced to arrive within the

time horizon by the first constraints in Eq. (1), because all the

scheduled flights are absorbed by either PAARs or ground holdings,

and the ground holdings are emptied by the fourth constraint. The

second constraints ensure that the actual number of arrivals should

not exceed the landing capacity, because the extra flights will be held

in the air. Solvingmodel described byEq. (1)will provide the optimal

PAARs Xi
t for each airport.

B. Chance-Constrained Model

The chance-constrained model aims to incorporate the constantly

changing landing capacities, which are caused by adverse weather

conditions, into the MGDP. The current models are rather

deterministic or based on predefined scenarios (like theBall et al. [13]

model). This paper proposes to impose a probabilistic constraint on

landing capacities, as follows:

P�Zi
t−1 � Xi

t − Zi
t ≤ ξit; i � 1; : : : ;M� ≥ α t � 1; : : : ; T (2)

in which P�⋅� is the probability measure for the stochastic landing

capacities, meaning that the landing capacity will only raise a

feasibility issue with the probability of α ∈ �0; 1�, in which α is also

called service level in this paper. The random components ξit are
random parameters that represent the correlated, stochastic landing

capacities, and only correlated random capacities are meaningful for

theMGDP planning because adverseweather conditions will usually

affect multiple airports of the metroplex simultaneously. Thus, the

MGDP planning under the stochastic landing capacities can be

written as

min
XT
t�1

XM
i�1

�cgYi
t � caZ

i
t�

subject to

Xi
t � Yi

t − Yi
t−1 � Sit t � 1; : : : ; T � 1; i � 1; : : : ;M

P�Zi
t−1 � Xi

t − Zi
t ≤ ξit; i � 1; : : : ;M� ≥ α t � 1; : : : ; T

Zi
0 � Zi

T�1 � 0

Yi
0 � Yi

T�1 � 0

Xi
t; Y

i
t; Z

i
t ≥ 0 (3)

The difference from the deterministic model is that the capacity
constraints are replaced with the probabilistic capacity constraint (2).
This problem is referred to as chance-constrained MGDP
optimization. The chance-constrained model directly uses the joint
landing-capacity distribution rather than generating a predefined
scenario set from the distribution (like the Ball et al. [13] model).

III. Convex-Approximation Approach

The chance programming indicates that some of the constraints
may be violated at a well-controlled, very low chance. In general, the
chance-programming problem is not easy to solve [17]. The
traditional solution approach to chance programming is the sample
average approximation (SAA). However, the SAA approach
becomes intractable quickly due to the exponential growth of state
space with the number of sampled scenarios. Moreover, the SAA
approach will only yield a feasible solution rather than an optimal
solution. Therefore, this section will propose a convex-
approximation method to efficiently solve the chance-constrained
model, which could overcome the computational limitation of the
SAA method when solving large-scale problems.

A. Problem Definition

The chance constraint would greatly complicate the computational
perspective of the problem because of the loss of convexity, in both its
feasible set and the constraint itself. Even though it is extremely
difficult to solve a chance-constrained optimization for a global
optimal solution, there are exceptions. In [18], the author showed
that, based on the log concavity of the distribution [19], the chance-
constrained model in Sec. II would have a convex feasible set. The
constraint would be equivalently transformed into a convex program,
which would be efficiently solved, as long as the function and its
gradient (or subgradient) are available. The detailed definitions and
theorems can be found in the Appendix.
Suppose the landing-capacity distribution is log concave with a

probability distribution function Fξ�x�. (The log-concave
assumption will be justified in Sec. IV.) Then, we have
1 − Fξ�Rtx� ≥ α, and by taking the log of both sides, the chance-
constrained MGDP model can be written in a concise form:

min c 0x

subject to

gt�x� � log�Fξ�Rtx�� − log�1 − α� ≤ 0 t � 1; : : : ; T (4)

Ax � b

x ≥ 0

in which c and x represent the vector of the weight coefficients and
decision variable, respectively; A, b, and Rt are the coefficients
corresponding to the original linear constraints.
With the exception of chance constraints, gt�x�, the model

described by Eq. (4) is a linear program. Although constraint gt�x� is
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nonlinear, it is convex by Theorem 1 in the Appendix [20], which

makes the model described by Eq. (4) a convex programwith respect

to x. For any feasible point x0 of the model described by Eq. (4), as

long as we have the function value at x0 [i.e., gt�x0�] and its gradient
∇gt�x0� [subgradient if gt�x� is nondifferentiable] at x0, then a first-
order gradient algorithm can be adopted to obtain the optimal

solution [21].

B. Polynomial Approximation

The key to solving the model described by Eq. (4) is to effectively

evaluate the gradient (or subgradient) of gt�x�, because the gradient
could lead to the deepest feasible search direction. This subsectionwill

build a polynomial-based approximation of gt�x� and use the gradient
of the polynomial to approximate its original. Such an approximation

has two advantages: first, thanks to the shape-preserving property of

the Bernstein polynomial (see the definition in Definition 3 of the

Appendix), we would effectively control the approximation errors for

both the functionvalues and their gradient at the same time. Second,we

show that, under a large-enough sample size, the obtained optimal

solution will converge to the true optimal solution.
Suppose a feasible x ∈ Rn, such that Ax � b, x ≥ 0,

x � �x1; : : : ; xn�, in which x1; : : : ; xn ∈ R1. We would impose an

upper bound and a lower bound on each component of x, as follows:

li ≤ xi ≤ ui; i � 1; : : : ; n (5)

We are interested in

∇gt�x�: �
�
∂gt�x�
∂x1

; : : : ;
∂gt�x�
∂xn

�
(6)

and each component ∂gt�x�∕∂xi:R → R is a univariate function with

respect to xi ∈ �li; ui�.
Let us define the ith marginal function of gt�x� as git�xi�, which is

the univariate function with respect to xi ∈ �li; ui�; git�xi� is

essentially the function gt�x� with x1; : : : ; xi−1; xi�1; : : : ; xn as a

constant value. In other words, the univariate function git�xi� is the
orthogonal projection of gt�x� onto xi. Since gt�x� is convex, all of its
marginal functionsgit�xi�, i � 1; : : : ; n are convexwith respect to xi.
Our approach is to approximate all of the marginal functions of

git�xi�with a convex, differentiable polynomial of degree k,pk�xi� at
a fixed x. Then, we estimate ∂gt�x�∕∂xi by p 0

k�xi�, such that the

problem of approximating gt�x� is decomposed into n-independent
univariate-approximation problems.
In this paper, the Bernstein polynomial is adopted to construct the

approximation pk�xi�. For the sake of simplifying the notation, we

useϕ�y� to represent one univariate function git�xi�.Without a loss of

generality, we assume y ∈ �0; 1�, because we can make a linear

change of variable, if necessary, to transform any finite interval

�li; ui� onto [0,1].
Theorem 2 (Appendix) shows that the Bernstein polynomial can

approximate any continuous univariate function on a closed interval

[22]. However, for a convex function ϕ�y�, its Bernstein-polynomial

approximation may not be convex because the sampled data may not

actually be convex due to an experimental numerical error. Besides,

for the simple Bernstein polynomial, the degree of the polynomial

needs to be doubled to halve the error [23]. Thus, we discard the idea

of directly approximating git�xi� by the Bernstein polynomial.

Instead, Theorem 3 shows that, for any convex function ϕ�y�,
y ∈ �0; 1�, we can always approximate both ϕ�y� and its derivative

ϕ 0�y� within ϵ uniformly with the polynomial:

pk�y� �
Xk
j�0

c�jψ j�y� (7)

of degreek, regardless of the differentiability ofϕ�y�. As long as all of
the coefficients in Eq. (7) are nonnegative, c�j ≥ 0, j � 0, 1; : : : ; k,
pk�y� will be convex. We also need k� 1 nonnegative coefficients

c�0 ; : : : ; c
�
k to constructpk�y�. To obtain these coefficients, we need a

set of points with coordinates �yi;ϕ�yi��, i � 1; 2; : : : ; k� 1. We

solve the following problem:

Table 1 Error
bounds as the degree k
of pk�y� increases

Degree k Error bound

4 1
5 0.67
6 0.48
7 0.36
8 0.28
9 0.22
10 0.18
12 0.13
20 0.048
40 0.012
50 0.008

Fig. 1 Algorithm flowchart for the chance-constrained problem. (Color in online.)
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min

(
max

i�1; : : : ;k�1
jϕ�yi� −

Xk
j�0

c�jψ j�yi�j; c�j ≥ 0

)
(8)

The pk�y� with coefficients c�0 ; : : : ; c
�
k is called the best

approximation of degree k.
We now need to determine the proper choice of the degree k.

Theorem 4 shows that, if we approximate an r−differentiable
function by pk�y�, the error will be quickly reduced by increasing the

order of the polynomial [24]. For example, when the degree increases

from k to k� 1, the rate of the error-bound reduction will be

�π∕2�r�jϕ�r��ω�j∕��k− r� 3� : : : �k� 1��k� 2���
�π∕2�r�jϕ�r��ω�j∕��k− r� 2� : : : k�k� 1��� � k− r� 2

k� 2
< 1

(9)

Fig. 2 Landing distributions for NYC metroplex. (Color in online.)
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In the previous discussion (Proof 1 of Theorem 3), we assume that
ϕ�y� is twice differentiable (i.e., r � 2). If we evaluate the error
bound when k � 4, and �π2∕2��jϕ�2��ω�j∕4 × 5� is the scale of the
error base valued at 1, we present the results in the following Table 1.
From Table 1, increasing k from 4 to 5 will reduce the error bound to
0.67 of its original value, while increasing k from 4 to 20 will reduce

the error bound to 0.048 of its original value. When we increase k
from 4 to 50, the new error bound will be reduced to 0.008 of its
original value. Given the result of Theorem 3 and the good
performance of the “best approximation” [i.e., pk�y�], the error
bound when k � 4 would already be a well-bounded value. Thus,
when we use k � 50, the new error bound will be reduced to a
fraction of 0.008, which should serve us adequately well.
At last, we determine the k� 1 coordinates {i.e., �yi;ϕ�yi��;

i � 1; : : : ; k� 1} to solve for the coefficients c�0 ; : : : ; c
�
k in Eq. (7).

We choose the Chebyshev nodes [25] on [0,1], as follows:

yi: �
1

2
−
1

2
cos

�
2i − 1

2k� 2
π

�
; i � 1; : : : ; k� 1 (10)

The technical detail regarding theminimization of the approximation

error by adopting Chebyshev nodes is in Proposition 1 (Appendix).
The procedure to estimate ϕ 0�y� by the polynomial pk�y� is

summarized in the following steps:
1) Step 0: the polynomial pk�y� is defined by the formulation in

Theorem 3.
2) Step 1: determine the overall error bound ϵ > 0.
3) Step 2: choose the degree k based on Theorem 4.
4) Step 3: calculate k� 1 Chebyshev nodes yi and coordinates

�yi;ϕ�yi��, i � 1; : : : ; k� 1 (Proposition 1).
5) Step 4: solve the model (8) for the coefficients c�0 ; : : : ; c

�
k , and

construct pk�y� in Eq. (7).
6) Step 5: use p 0

k�y� as an approximation of ϕ 0�y�.

C. Solving Framework

Based on the approximation approach in Sec. III.B, the function

values and gradients for the chance constraint gt�x� can be estimated
for any given point �x. Therefore, a first-order algorithm can be
adopted to solve the whole problem. In this paper, the feasible
direction method [21] is adopted as the primary algorithm.

The flowchart of the solving algorithm for the chance-constrained

problem is shown in Fig. 1. Recall that the construction of the

polynomial approximation for each individual marginal function is

independent. Therefore, at each step, the chance constraint can be

approximated in parallel at the given point �x. Then, the results are
gathered to provide the first-order information, which is used to

search for the feasible direction and optimal search step. Note that the

algorithm needs to call the approximation process during every

Fig. 3 Objective convergence along the number of sample scenarios.
(Color in online.)

Fig. 4 Arrival schedules for NYC metroplex airports on 20 May 2016.
(Color in online.)

Table 2 Covariance matrix for the
joint distribution of NYC metroplex

landing capacities

JFK EWR LGA

JFK 4.604 0.805 0.2592
EWR 0.805 3.652 1.633
LGA 0.2592 1.633 4.407
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iteration until the final convergence. Therefore, the parallel-
computing framework can greatly improve the computational
efficiency by the fact that the approximation process has the most
expensive computing cost of the whole process.

IV. Experimental Setup

The assumption that the landing-capacity distribution follows a
log-concave distribution, but lacks closed-form distributional
information, would be justified with two phases. First, in reality of
air-traffic management, the historical data from the landing-capacity
distribution are in the formof empirical distribution [26,27]. By using
proper distribution-estimation methods (such as the kernel density
estimation), the empirical distribution will be presented as a
continuous distributionwithout the distributional information. By the
Glivenko–Cantelli theorem (see [28]), the empirical distribution
function estimates the cumulative distribution function (CDF) and
converges with a probability of 1. That is, the empirical distribution
can be presented as an underlying continuous distribution. Second,

once the empirical distribution is in the format of a continuous
distribution (but still lacks distribution information), this paperwould
further assume log concavity because so many commonly used
distributions are, indeed, log concave. For example, the normal
distribution, uniform distribution, gamma distribution (with a shape
parameter greater than 1), beta distribution (with all parameters
greater than 1), Weibull distribution, Laplace distribution, logistic
distribution, exponential distribution, and extreme value distribution
are log concave. There are only a few commonly used distributions
that are not log concave, such as the log-normal distribution, t
distribution, and chi-square distribution, which are often used to
describe the distributions of various statics rather than random
variables raised from real problems.
To evaluate the chance-constrained model for MGDP, a joint

distribution of landing capacities is required. Moreover, to further
support the log-concave distribution assumption, we would like to
justify it with real empirical data. We analyzed the observed landing
capacities of theNYCmetroplex (JFK, EWR, andLGA) for 368 days
from May 2015 through October 2015, and from May 2016 through
October 2016. The landing capacities were computed based on the
algorithm in [16,29] and the “arrivals for metric computations” data
from the aviation system performance metrics database (ASPM)
[30]. The individual distribution of landing capacities for each airport
is shown in Fig. 2. The distributions are estimated by the kernel
density estimation (KDE), which is a nonparametric way to estimate
the probability density function (PDF) without assuming any
distributional priori property [31]. In Fig. 2, the empirical data are
shown in bar chart, and theKDE-based PDF is shown the dashed line.
The individual distributions are demonstrated to be very close to the
normal distribution. Figure 2 shows the CDFs of a normal
distribution (dot line) and the CDF for the estimated distribution for
each airport (solid line). A Kolmogorov–Smirnov test of normality
was also applied, and the result, referred to as apvalue, is indicated in
the title of each subfigure. The p value generally indicates that the
estimated distribution can be reasonably approximated as normal at
the significant level 0.05. Therefore, the empirical landing capacities
of all airports in the NYC metroplex are fitted by KDE to be a joint
multinormal distribution, which is log concave. Please note that the
convex-approximation method can work with any log-concave

Fig. 5 Ground and air delays under various service levels. (Color in
online.)

Fig. 6 Optimal PAARs of JFK under various service levels. (Color in online.)

6 Article in Advance / CHEN AND SUN

D
ow

nl
oa

de
d 

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 o

n 
Se

pt
em

be
r 

19
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

29
64

 



distribution; the normality is not required for general cases. The
covariancematrix is shown in Table 2,which confirms the correlation
between the airports in the same metroplex.
Scenarios for the Ball et al. [13] model were generated by

successively sampling landing capacities from the joint distributions.
Different scenario samples will result in different minimum expected
costs. Figure 3 shows the minimum expected cost along various
sample sizes. The blue area is the 95% confidence interval for each
sample size. We chose to sample 500 scenarios because the 95%
confidence interval of the expected cost almost keeps the same with
more than 500 scenarios. Each of the 500 scenarios is assigned with
the same 1∕500 probability to calculate the expected cost of the static
model in Sec. II.
The two approaches of MGDP were evaluated using the same

flight schedules for theNYCmetroplex on 20May2016. The number
of arrivals per hour for this day for all airports, taken from the ASPM
database, is shown in Fig. 4. We discretized the flight schedule and
modified the last time interval with infinite capacity to ensure all
flights could land within the time horizon. Solutions to the Ball et al.
[13] model were found using the Gurobi mathematical programming
solver [32]. The chance programming was implemented in the
Python programming language.

V. Experimental Results

One of the key advantages of the chance-constrained model is the
ability to provide robust solutions with a user-defined service level.

Figure 5 shows the total delays of the NYC metroplex under various
service levels from 0.5 to 0.9, and the delays with the 500-scenario

static model. The relative cost ratio of air to ground delay is chosen to
be 2: ca∕cg � 2. In Fig. 5, the number of delayswill increasewith the

service level, which is consistent with the intuition that the high
service level will result in conservative solutions. This is also
confirmed by the ratio of ground to air delays. The numbers above

each bar in Fig. 5 represent the ratio of ground to air delays. The low
service level, which represents aggressive planning, produces more
air delays than ground delays. On the other hand, the high service

level, which represents conservative planning, results inmore ground
delays than air delays. However, the scenario-based method (Ball

et al. [13] model) will only produce one average result with respect to
the minimum expected cost, which lacks the ability to adjust the
planning strategy under different service levels.
Figure 6 shows the details of the optimal PAARs at JFK under

various service levels. The red line shows the optimal PAARs for each

hourwithBall et al. [13]model, referred to as scenario, and theyellow
line represents the optimal PAARs with the chance-constrained

model under a certain service level. By comparing both the results
with the flight schedule (the blue line), we can find that both of the
optimal PAARs are almost identical with the schedule before

1200 hrs, which represents the slack time. In the peak period, the
scenario-based method slightly reduced the number of planned
arrivals and compensated the schedule in the last time step. However,

the chance-constrainedmodel generates totally different solutions. In
general, the low service level will provide aggressive planning, in
which the PAAR almost follows the schedule. On the other hand, the

conservative planning under the high service level will assign more
ground delays in the beginning to avoid possible air delays, and then

compensates the schedule in the latter time step. Meanwhile, similar
results are observed for the other two airports (EWR and LGA).
Therefore, the results demonstrate that the conservativeness level is

positively correlated with the robustness level. The chance-
constrained model, introduced in this paper, provides a quantized
way to balance the solution’s robustness and potential cost by

choosing a proper service level.
As mentioned in Sec. III, the parallel-computing framework can

greatly improve the computational efficiency. Figure 7 shows the
computation time with different numbers of processors, in which the

polynomial degree is fixed to be 10. The computation time decreases
as more processors are launched under the parallel-computing
framework. However, the speedup is not linear to the number of

processors, and the run time is decreased from 684 to 45 s with 40
processors. The reason is that the parallel-programming model has
inherent overheads, such as communication and synchronization

between processors. In addition, the Ball et al. [13] model with 500
scenarios only takes 5 s, which is nine times faster than the chance-

constrained model. The chance-constrained model is slower because
it needs to fit the polynomial based on the distribution to approximate
the first-order information, whereas the Ball et al. model saves time

by solving a linear programming with sparse samplings of the
distribution. Although the Ball et al. model is more efficient, it lacks
the ability to provide robust solutions with service level. Moreover,

the 45 s run time is still efficient in practice for selecting PAARs in
each hour, because the planning is often performed several hours

ahead. For a larger-size problem with more than three airports, the
gap could be further reduced by deploying more computing
processors.
As the other key factor of the computation time, the relationship

between run time and the polynomial degree is demonstrated in

Fig. 8, in which the number of processors is fixed to be 40. Even
though a high polynomial degree could help reduce the

approximation error, the increase of degree could also explode the
computation time. Therefore, the choice of the polynomial degree is a
balance between the computation time and the solution accuracy. In

fact, the degree can be chosen between 10 and 15 to provide a good
approximation, based on the experimental experience. Further
increasing the degree levelwill provide little help for the quality of the

solution.

Fig. 7 Computation time decreasing as a function of the number of
processors. (Color in online.)

Fig. 8 Computation time associated with different polynomial degrees.
(Color in online.)
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VI. Conclusions

This paper introduces a novel chance-constrained approach for
ground-delay program planning under uncertainty. The major
advantage of the chance-constrained model is the ability to provide
robust solutions with a user-defined service level. The approach is
compared with a seminal model for selecting planned AARs for
airports in theNewYorkCitymetroplex.Although the seminalmodel
was found to be more efficient, the chance-constrained model shows
the ability to provide a quantized way to balance the solution’s
robustness and potential cost by choosing a proper service level.
Moreover, the parallel-computing framework based on the convex-
approximation method was demonstrated to be helpful in improving
the computing efficiency, which suggests that simply increasing the
number of processors would help solve a large-scale planning
problem under uncertainty with the same method and framework.

Appendix: Definitions and Theorems

Definition 1: A function f�z� ≥ 0, z ∈ Rm is said to be
logarithmically concave (in short form, log concave), if, for any z1, z2
and 0 < λ < 1, we have the inequality:

f�λz1 � �1 − λ�z2� ≥ �f�z1��λ�f�z2���1−λ�

If f�z� ≥ 0 for z ∈ Rm, then this means that log f�z� is a concave
function in Rm.
Definition 2: A probability measure defined on the Borel sets of

Rm is said to be logarithmically concave (log concave) if, for any
convex subsets of Rm: X, Y and 0 < λ < 1, we have the inequality:

P�λX� �1 − λ�Y� ≥ �P�X��λ�P�Y���1−λ�

in which λX � �1 − λ�Y � fz � λx� �1 − λ�yjx ∈ X; y ∈ Yg.
Based on these two definitions, we have
Theorem 1: If ξ ∈ Rm is a random variable, the probability

distribution of which is log concave, then the probability distribution
function Fξ�x� � P�ξ ≤ x� is a log-concave function in Rm.
The proof of Theorem 1 and the rationale of Definitions 1 and 2 are

presented in [20], and this paper omits them.
Definition 3: The Bernstein polynomial of a function ϕ�y�, y ∈

�0; 1� is

Bk�ϕ; y�: �
Xk
j�0

�
k
j

�
yj�1 − y�k−jϕ�j∕k� (A1)

and

Bk�ϕ; y� � ϕ�0�; Bk�ϕ; 1� � ϕ�1� (A2)

Theorem 2 (Bernstein theorem): Let ϕ�y� be continuous on [0,1].
Then

lim
k→∞

Bk�ϕ; y� � ϕ�y� (A3)

any point y ∈ �0; 1� and the limit (A3) hold uniformly in [0,1]. That is,
given an ϵ > 0, for all large-enough k, we have

jϕ�y� − Bk�ϕ; y�j ≤ ϵ; y ∈ �0; 1� (A4)

The proof is in [22], and we omit it.
Theorem 3: There exists a sequence of component functions:

ψ0�y�;ψ1�y�;ψ2�y�; : : : (A5)

Each is convex on [0,1], such that any function ϕ�y� that is convex
on [0,1] may be approximated with arbitrary accuracy on [0,1] by a
sum of nonnegative multiples of the component functions.
The proof is in [23]. Because this result plays the central role of this

paper, wewill present the proof as a courtesy.We adopt our notations
(not the original) as being consistent with our problem.

Proof: First, we assume that ϕ�y� is twice differentiable on [0,1]
because, if otherwise, we can apply Theorem 2 to construct a
(convex) Bernstein polynomial, which approximates ϕ�y� to within
ϵ∕2 on [0,1] using a degree of k > 2. We then use the obtained
Bernstein polynomial to replace ϕ�y�. We use ϕ 0�y� and ϕ 0 0�y� to
denote the first- and second-order derivatives of ϕ�y�, respectively.
Let

Bk�ϕ 0 0; y� �
Xk
j�0

�
k
j

�
yj�1 − y�k−jϕ 0 0�j∕k� (A6)

represent the Bernstein polynomial of degree k for ϕ 0 0�y�. Let us
observe that yj�1 − y�k−j ≥ 0 on [0,1] and that, in Eq. (A6), are being
approximated by the sum of nonnegative multiples of the
polynomials yj�1 − y�k−j. For k ≥ 2, define pk�y� by

p 0 0
k �y� � Bk−2�ϕ 0 0; y�; p 0

k�0� � ϕ 0�0�; pk�0� � ϕ�0�
(A7)

We see that pk�y� is a polynomial of degree at most k. We also
define βj;k�y� for 2 ≤ j ≤ k by

β 0 0
j;k�y� � yj−2�1 − y�k−j; β 0

j;k�0� � βj;k�0� � 0 (A8)

To complete the definition of polynomials βj;k�y�, we define

β0;k�y� � sign�ϕ�0��; β1;k�y� � ysign�ϕ 0�0�� (A9)

The relevance of the choice of functions (A9) will be seen later.We
then have

pk�y� �
Xk
j�0

c�j βj;k�y� (A10)

in which c�j ≥ 0 and β 0 0
j;k�y� ≥ 0 on [0,1]. Now, given any ϵ > 0,

applying Theorem 2, we have

jBk−2�ϕ 0 0; y� − ϕ 0 0�y�j ≤ ϵ (A11)

on [0,1]. That is

jp 0 0
k �y� − ϕ 0 0�y�j ≤ ϵ (A12)

on [0,1], and therefore, for y ∈ �0; 1�����
Z

y

0

�p 0 0
k �t� − ϕ 0 0�t�� dt

���� ≤
Z

y

0

jp 0 0
k �t� − ϕ 0 0�t�j dt ≤ ϵy ≤ ϵ (A13)

Using Eq. (A7), the inequality (A13) gives

jp 0
k�y� − ϕ 0�y�j ≤ ϵ (A14)

for y ∈ �0; 1�. Similarly, another integration shows that

jpk�y� − ϕ�y�j ≤ ϵ (A15)

for y ∈ �0; 1�. Note that the polynomial βj;k�y� may be
ψ0�y�;ψ1�y�;ψ2�y�; : : : . We set

ψ j�y� � βj;k�y�; 2 ≤ j ≤ k; ψ0�y� � sign�ϕ�0��;
ψ1�y� � ysign�ϕ 0�0�� (A16)

in which for j ≥ 2

β 0 0
j;k�y� � yj−2�1 − y�k−j � yj−2

Xk−j
i�1

�−1�i
�
k − j
i

�
yi (A17)

and we have
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βj;k�y� � yj
Xk−j
i�0

�−1�i
��

k − j
i

�
yi∕��i� j��i� j − 1��

�
(A18)

Theorem 4 (Jackson’s theorem V): If ϕ�y� is r differentiable on
y ∈ �0; 1�, and ϕ�y� is approximated by pk�y�, which is defined in
Theorem 3, then the approximation error of ϕ�y� on [0,1] satisfies

max
y∈�0;1�

jϕ�y� − pk�y�j ≤
�
π

2

�
r jϕ�r��ω�j
��k − r� 2� : : : k�k� 1�� ; k ≥ r

(A19)

in which ϕ�r��ω� represents the r-order derivative of ϕ�y� at
some ω ∈ �0; 1�.
The proof of this theorem is in [24].
Proposition 1: Let polyk�y� be the polynomial constructed from

k� 1 coordinates �yi;ϕ�yi��; i � 1; : : : ; k� 1. Then

jϕ�y� − polyk�y�j �
ϕ�k�1��ω�
�k� 1�! Πk�1

i�1 �y − yi� (A20)

in whichω lies in the smallest interval containing y1; : : : ; yk�1 and y.
This proposition is in [25]. Because we can apply Theorem 2 to

approximate any continuous function by a Bernstein polynomial,
which is differentiable, we can assume that the (k� 1)-order
derivative ϕ�k�1��y� exists, and it is a bounded value for y ∈ �0; 1�.
Thus, to reduce the error of approximation, we need to minimize

Π�k�1�
i�1 �y − yi� by choosing the Chebyshev nodes on [0,1], as

follows:

yi: �
1

2
−
1

2
cos

�
2i − 1

2k� 2
π

�
; i � 1; : : : ; k� 1 (A21)
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