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Optimized landing of drones in the context of
congested air traffic and limited vertiports

Zhenyu Zhou, Jun Chen and Yanchao Liu

Abstract—Drone fleet operators must be able to land the
whole fleet in short notice. In practical operations, landing
spots are usually much fewer than airborne drones. When
many drones gravitate toward the limited landing spots si-
multaneously, congestion management becomes a challenge.
This paper characterizes the fleet landing problem using
mixed integer programming techniques and proposes a
series of computational enhancements to reduce the solution
time from hours to seconds. The solution algorithms are
implemented in a software prototype for traffic manage-
ment, and are thoroughly validated via extensive numerical
examples and field simulations. For a fleet of 18 drones
navigating at the same altitude layer within a 4-square
kilometer area, all routing and trajectory computations can
be completed in less than 5 seconds, and the entire fleet
is able to complete landing at three pre-planned landing
spots within about 3 minutes. Therefore, the models and
algorithms are suitable for practical use.

Index Terms—Unmanned Traffic Management, Routing,
Optimization, Trajectory Planning, Mixed Integer Pro-
gramming

I. INTRODUCTION

Large-scale, organized deployment of unmanned aerial
vehicles (UAVs or drones) can unlock substantial effi-
ciency gain in transportation systems. Currently, there are
mounting needs from a number of industries for the abil-
ity to transport goods and people for short distances (i.e.,
intra-city trips) in the low-altitude airspace, which call
for a safe and efficient airspace management mechanism.
Many regulatory advancements have been made in the
U.S. in recent years, including a series of Congress bills
[1], [2], proposed rulemakings by the Federal Aviation
Administration (FAA) [3], [4], and Concept of Opera-
tions developed by FAA and the National Aeronautics
and Space Administration (NASA) [5], [6].

Existing industry-led unmanned aircraft system (UAS)
traffic management (UTM) developments focus more on
the communication and information technology (C&IT)
layer, such as networked discovery and synchronization,
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communication and interoperability standards among dif-
ferent UAS Service Suppliers (USS) [7], [8]. In contrast,
the resource optimization aspects of traffic management
is less discussed. It is imperative to fill this gap timely
for several reasons. First, as the UAS is increasingly
deployed, the airspace will become a scarce resource,
and the ability to optimally plan and utilize this resource
under dense heterogeneous traffic presents an essential
requirement on the infrastructure. Second, the resource
optimization mindset and approach should be assessed
early in the UTM rulemaking process, as it would be
much harder and costlier to mend inefficient mandates
than making them efficient in the first time.

According to Deloitte [9], one of the biggest hurdles
for urban air transportation is the cost and complexity
involved in building adequate “vertiplaces” - a collec-
tive term for vertiports, vertihubs and vertistations that
serve as pickup and drop-off sites for people and cargo
transported by vertical takeoff and landing (VTOL) aerial
vehicles - to support widespread operations within cities.
It is foreseeable that in the near future the UTM system
will consist of many more aircraft than landing facilities.
Consequently, the problem of optimally sequencing and
spacing aircraft for landing, i.e., [10], [11], will be an
important operational challenge in UTM.

In NASA’s concept of operations [12], [5], [13], priori-
tization for public safety and emergency operations is one
of the five core operating principles of UTM. This means
that delivery fleets must be able to vacate the airspace in
short notice to make way for high-priority operations. In
addition, the weather condition is more volatile at low
altitudes than at higher altitudes (e.g., in the stratosphere
where commercial airliners cruise), and will have more
impact on small UAS. A sudden change in weather, for
example, would require a whole airborne fleet to land as
soon as possible. In these circumstances, the problem of
efficiently landing a large number of drones at a limited
number of depots (vertiports) is a realistic operational
problem. We call it a multi-port capacitated fleet landing
(MCFL) problem. Here, the term “capacitated” means
limited capacity of both the airspace and the vertiports.
The problem is depicted in Figure 1.

In this paper, we first formulate the MCFL problem as
a mixed integer program (MIP) by applying some rigor-
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Fig. 1: Illustration of high-density urban air traffic having
limited vertiport capacity.

ously derived linearization schemes for motion, proxim-
ity and collision avoidance constraints in the Euclidean
space. Then, we propose a series of decomposition,
parallel computing and constraint generation heuristics
to significantly speed up the solution process, making it
suitable for real-time use in fairly dense traffic scenarios.
Lastly, a set of comprehensive computational studies is
presented to showcase the effectiveness of the proposed
solution methods.

Aircraft routing in congested airspace has been in-
vestigated extensively in the air traffic control (ATC)
literature. Prominent methods include multicommodity
network flow models [14], queuing network models [15],
[16], mixed integer linear and nonlinear programming
models [17], [18], semidefinite programming methods
[19] and agent-based approaches [20]. While most of
these methods are general enough to be applicable to
UTM, in reality drone traffic presents some unique char-
acteristics that require special treatments. For instance,
as flying robots, drones have super-human response
time and maneuverability and hence can tolerate smaller
separation (or headway) distances; drone traffic can be
omnidirectional, unfettered by fixed routes or airway
corridors; multicopter and VTOL drones have unique
equations of motion compared to fixed-wing aircraft
typically studied in the ATC literature. To deal with these
specialties, [21] proposed a progressive motion planning
method based on nonlinear optimization that was able to
centrally route all drones to their respective destinations
in an arbitrarily dense traffic. However, in that work the
airspace was assumed to be a 2D Euclidean plane with
the vertical dimension omitted. For instance, the time it
takes for a drone to land vertically as well as the capacity
of the vertical landing corridor was ignored. In [22],
a network-free mixed integer programming formulation
was proposed to model dynamic drone routing problems
in an Euclidean plane. In this model, although drone
actions were modeled at a greater granularity to account
for various business requirements in drone delivery, the

UTM aspects of the problem, in particular the collision
avoidance constraints, were unaddressed. The omission
of important UTM considerations seems to be a common
shortcoming in recent drone delivery operational models,
which are mostly rooted in the literature of conventional
(i.e., ground-based) vehicle routing problems (VRP), e.g.,
[23], [24], [25], [26]. This paper attempts to bridge
the gap by explicitly modeling inter-drone separation
constraints in an MIP framework. The main innovations
are summarized as follows.
• We provide the first attempt at addressing the multi-

port capacitated fleet landing problem from an opti-
mization perspective, and develop a comprehensive
MILP formulation by employing several innovative
modeling techniques.

• Based on realistic considerations, we decompose
the problem into two sequential subproblems, and
develop a predictive congestion-based assignment
method and a variable-fixing heuristic to solve these
problems efficiently. The speedup is up to 500 folds.

• We implement the algorithms in an in-house fleet
management software App and demonstrate its
practical usefulness on real drone platforms using
software-in-the-loop simulations.

The rest of the paper is organized as follows. In
Section II, we propose the main optimization model for
the fleet landing problem, and develop all-time separation
bounds as well as their formulation in the mixed integer
programming framework. In Section III, we decompose
the decision problem into two main parts and develop
a congestion-based depot assignment method to assign
drones to landing depots. Section IV describes a set of
variable-fixing heuristics to reduce the effective size of
the routing model. Section V provides numerical experi-
ments and result analysis, and Section VI concludes the
paper with pointers for future research.

II. MAIN MODEL

The decision problem is stated as follows: given k
depots (vertiports) of fixed geographic locations on the
ground and given a temporal snapshot of the air traffic
scene, i.e., the spatial distribution of N drones and their
current status, determine the landing routes and timing
for all drones. The objective is to minimize the total time
to land, that is, minimize the sum of airborne time of all
drones.

A. Assumptions

We make the following assumptions and considera-
tions about the fleet landing scenario.
• The airspace is layered by altitude. A drone is

restricted to fly horizontally within the altitude layer
that it starts in, and can make a final vertical descent
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TABLE I: Sets and Parameters in the MIP Model

Symbol Description
T Set of time steps
G Set of sides of the approximating polygons
V Set of vehicles
D Set of depots
P Set of relational positions, P = {P1, ..., P4}
A Set of actions for a vehicle,

A = {1 : fly, 2 : descend, 3 : ground}
OX

v , OY
v Coordinate of veh. v’s origin

ag , bg , cg Coefficients in the g-th linear inequality
Rv Maximum speed of veh. v
QX

d , QY
d Coordinate of depot d’s location

QC
d Capacity of depot d

h, l Headway time and landing time, respectively
M,MX ,MY Large constants of appropriate values

TABLE II: Decision Variables in the MIP Model

Symbol Description
zAvd = 1 if veh. v is assigned to depot d
zSv1v2tp = 1 if v1 and v2 are in position p at time t

zACT
vat = 1 if veh. v is performing action a at time t

zDEC
vdt = 1 if veh. v is descending at depot d at time t

xvt, yvt Coordinate of veh. v at time t

x′
vt, y

′
vt Speed of veh. v at time t

xD
v , yDv Coordinate of veh. v’s destination

xDD
vt , yDD

vt Veh. v’s distance to destination at time t

xDP
v1v2t

, yDP
v1v2t

Distance between veh. v1 and v2

only when it is straight above a landing depot.
Therefore, we assume that over the course of the
landing process, a drone will perform three actions
(or transition across three states) sequentially: 1. fly
to a depot location, 2. descend vertically, 3. remain
on the ground.

• The vertical landing corridor of a depot is capaci-
tated, only one drone can be in the corridor at any
given time.

• Each drone is surrounded by a safety disc of a
radius proportional to its maximum speed and a
headway time tolerance. The safety discs of any
pair of drones in the same altitude layer should not
overlap.

We adopt the following conventions in the rest of the
paper: (1) The terms drone and vehicle are used inter-
changeably; (2) While the sets, parameters and variables
used in the main model are summarized in notation
tables, other symbols are defined inline at first use. For
space limitation, proofs are omitted here but are available
upon reader’s request.

n = 8 n = 16

Fig. 2: Inner polyhedral approximations of a circular
area.

B. Formulation

We will list out relevant constraints, and the rationale
behind their formulation.

1) Objective Function: To make all drones land as
quickly as possible, we will minimize the total airborne
time, or equivalently, maximize the total time on the
ground, that is,

Maximize
∑

v∈V,t∈T
zACTv3t (1)

2) Equations of Motion: The location of a vehicle at
time t is the result of uniform linear motion starting from
the location at time t− 1:

xvt = xvt−1 + x′vt, ∀v ∈ V, t ∈ T , t 6= 1 (2)
yvt = yvt−1 + y′vt, ∀v ∈ V, t ∈ T , t 6= 1 (3)

The velocity of a vehicle can be different in different time
intervals, but within the same time interval, the velocity
is a fixed vector (x′vt, y

′
vt) whose length is no more

than the maximum speed of the vehicle Rv . We linearize
the quadratic constraint by approximating a circular area
using its n-sided inscribing polygon, illustrated in Figure
2.

agx
′
vt + bgy

′
vt ≤ cgRv, ∀v ∈ V, t ∈ T , g ∈ G (4)

The coefficients ag , bg and cg describing the inequality
of the sides g ∈ G of a unit polygon can be calculated
easily, see [22] for details.

3) Drone State and Action Constraints: Each vehicle
must be assigned to a depot and the assignment is
invariant over time, that is, the vehicle-depot assignment,
once made, will not change over the course of the landing
execution process.∑

d∈D

zAvd = 1, ∀v ∈ V (5)

The destination location of a vehicle is set to the
location of the depot the vehicle is assigned to.

xDv =
∑
d∈D

zAvdQ
X
d , ∀v ∈ V (6)
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yDv =
∑
d∈D

zAvdQ
Y
d , ∀v ∈ V (7)

A vehicle can be in the “descend” mode (zACTv2t = 1)
only when it reaches its destination. The following set
of constraints is used to enforce this relation.

xDDvt ≥ xvt − xDv , ∀v ∈ V, t ∈ T (8)

xDDvt ≥ xDv − xvt, ∀v ∈ V, t ∈ T (9)

yDDvt ≥ yvt − yDv , ∀v ∈ V, t ∈ T (10)

yDDvt ≥ yDv − yvt, ∀v ∈ V, t ∈ T (11)

xDDvt + yDDvt + (MX +MY )zACTv2t ≤MX +MY ,

∀ v ∈ V, t ∈ T (12)

A vehicle must be in one of the three states at any
time. ∑

a∈A
zACTvat = 1, ∀v ∈ V, t ∈ T (13)

A vehicle can descend at a depot only if it is assigned
to this depot.

zDECvdt ≤ zAvd, ∀v ∈ V, d ∈ D, t ∈ T (14)

A vehicle can be descending at depot d at time t only
if it is in the descend state. Conversely, when a vehicle
is in the descend state, it must be actually descending at
one of the depots.

zDECvdt ≤ zACTv2t , ∀v ∈ V, d ∈ D, t ∈ T (15)∑
d∈D

zDECvdt = zACTv2t , ∀v ∈ V, t ∈ T (16)

The number of vehicles descending at a depot at any
given time cannot exceed the corridor capacity at the
depot. ∑

v∈V
zDECvdt ≤ QCd , ∀d ∈ D, t ∈ T (17)

For a multicopter drone, the vertical descending speed
is much smaller than the horizontal cruise speed for
safety reasons. If the descending stage takes l time peri-
ods, then it means that if a drone enters the descending
state at time t, it must remain in this state in the next l
periods.

zACTv2t − zACTv2t−1 ≤ zACTv2t′ , ∀(t, t′) : t < t′ ≤ t+ l (18)

A vehicle can be in the grounded state (a = 3) at
time t only if it was in either the grounded state or the
descending state in the previous time period t− 1, and a
vehicle that has reached the grounded state must remain
in the grounded state in subsequent time periods.

zACTv3t ≤ zACTv3t−1 + zACTv2t−1, ∀v ∈ V, t ∈ T (19)

zACTv3t ≥ zACTv3t−1 (20)

These constraints ensure that the state sequence of (fly,
descend, grounded) is properly maintained.

4) Inter-vehicle Separation: Collision avoidance con-
straints require that every pair of vehicles navigating
in the same altitude layer must be at least a certain
distance apart horizontally at all times. In the 2D space,
this requirement leads to nonconvex quadratic constraints
(Ref. [21]). Specifically, let (xv, yv) be the location
coordinate of vehicle v at a given time, then for any
two vehicles (say 1 and 2) flying at the same altitude,
the collision avoidance constraint is expressed as

(x1 − x2)2 + (y1 − y2)2 ≥ S (21)

where S is the minimum separation distance. As a first
step of integrating it into an MIP model, we want to
replace constraint (21) by the L1 form as follows

|x1 − x2|+ |y1 − y2| ≥ S′ (22)

As a substitute for (21), constraint (22) is desired to be
both safe and efficient, whereas safe means that (22)
should unconditionally imply (21) and efficient means
that S′ should be minimal. What should S′ be?

Proposition 1. Let (x1, y1) and (x2, y2) be the coordi-
nates of two points in R2, and let S be a given constant.
Then, the minimum value of S′ that makes (22) ⇒ (21)
is S′ =

√
2S.

This proposition is a straightforward corollary of the
known result (e.g., Cauchy-Schwarz inequality, or equa-
tion (2.2.5) in [27]) that if x ∈ Rn, then ‖x‖1 ≤√
n‖x‖2, so we will omit the proof.
In an algebraic model, collision avoidance will be

enforced at discrete time points. For instance, constraint
(22) will actually take the form

|x1,t − x2,t|+ |y1,t − y2,t| ≥ S′, for each t ∈ T (23)

Unfortunately, this constraint says nothing about the
intervehicle distance between successive time points t
and t+ 1. Could the separation requirement be violated
during the interval, and by how much? Answering this
question requires taking the vehicles’ motion and speed
into consideration. Let ∆t ∈ R2 be the vector that points
from the coordinate of vehicle 1 to that of vehicle 2,
thus the left side of equation (23) is equal to ‖∆t‖1.
Assume that the vehicles travel at a fixed velocity during
the time interval and let δt be the relative velocity
of the two vehicles during the time interval, then the
length of δt is bounded by the maximum relative speed
R := R1 + R2, where Rv denotes the maximum speed
of vehicle v. In other words, we have ‖δt‖2 ≤ R, and
thus ‖δt‖1 ≤

√
2R. Equation of motion implies that

∆t+1 = ∆t+δt. Then the above questions translate to the
inquiry “do ‖∆t‖1 ≥ S′ and ‖∆t+1‖1 ≥ S′ guarantee
‖∆t+α‖1 ≥ S′ for any α ∈ [0, 1]?” or equivalently, what
is the minimum value of ‖∆t + αδ‖1 for 0 ≤ α ≤ 1,
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given ‖∆t‖1 ≥ S′, ‖∆t+1‖1 ≥ S′ and ‖δt‖1 ≤
√

2R?
The following proposition answers this inquiry.

Proposition 2. Given constants Ŝ, R ≥ 0, let ∆t, δt ∈
Rn with ‖δt‖1 ≤

√
2R for t = 0, 1, 2, . . ., and define

∆s = ∆bsc + (s − bsc)δbsc, for s ∈ R+. Then the
algebraic constraint ‖∆t‖1 ≥ Ŝ, t = 0, 1, 2, . . . implies
that the all-time distance ‖∆s‖1 satisfies ‖∆s‖1 ≥
max(0, Ŝ −

√
2R/2) for all s ∈ R+.

The proof is based on KKT conditions of a nonlinear
optimization problem, similar to the proof of Theorem
1 in [21]. We will omit the proof here. Combining
Proposition 1 and 2, we have that, in order to enforce
(21) in continuous time, we need

√
2S = Ŝ −

√
2R/2,

which gives Ŝ =
√

2(S + R/2). Thus it is sufficient to
enforce

|x1,t−x2,t|+ |y1,t−y2,t| ≥
√

2(S+R/2),∀t ∈ T (24)

In practice, the all-time separation distance S is usu-
ally specified in terms of the number of time intervals.
For example, we may require that any two vehicles must
be h seconds apart even in the worst case scenario, i.e.,
the two vehicles traveling head to head at maximum
speeds. In this case, S can be written as hR. So the
above constraint can be rewritten as

|x1,t − x2,t|+ |y1,t − y2,t| ≥ h′R,∀t ∈ T (25)

where h′ :=
√

2(h+ 1/2).
At this point, we have a set of inequalities (25) to

efficiently describe the inter-vehicle separation require-
ments for any pair of drones, and guarantee all-time sep-
aration. However, these inequalities contain the absolute
value function which cannot be used in an MIP model.
Moreover, only when both drones are in the fly mode
(a = 1) should we enforce the separation constraint. To
address these issues, we implement (25) for each pair of
drones by a set of linear constraints.

xv1t − xv2t + yv1t − yv2t + 3M ≥
MzSv1v2tp1 +MzACTv11t +MzACTv21t + h′(Rv1 +Rv2),

∀ v1, v2 ∈ V, v1 6= v2, t ∈ T (26)
xv2t − xv1t + yv1t − yv2t + 3M ≥
MzSv1v2tp2 +MzACTv11t +MzACTv21t + h′(Rv1 +Rv2),

∀ v1, v2 ∈ V, v1 6= v2, t ∈ T (27)
xv1t − xv2t + yv2t − yv1t + 3M ≥
MzSv1v2tp3 +MzACTv11t +MzACTv21t + h′(Rv1 +Rv2),

∀ v1, v2 ∈ V, v1 6= v2, t ∈ T (28)
xv2t − xv1t + yv2t − yv1t + 3M ≥
MzSv1v2tp4 +MzACTv11t +MzACTv21t + h′(Rv1 +Rv2),

∀ v1, v2 ∈ V, v1 6= v2, t ∈ T (29)∑
p∈P

zSv1v2tp = 1, ∀v1, v2 ∈ V, v1 6= v2, t ∈ T (30)

In essence, equation (25) corresponds to one of the four
cases given in (26) - (29), depending on the spatial
relation between v1 and v2, and equation (30) selects
one from the four possible cases.

The overall MIP model is as follows.

Maximize
∑

v∈V,t∈T
zACTv3t

Subject to (2)− (20), (26)− (30)

Note that the model’s objective function will incen-
tivize all drones to reach the “grounded” state as soon
as possible, and ensure that once the “grounded” state
is reached, the state will remain “grounded” until the
end of the planning time horizon T . Admittedly, models
that maximize only one of the variables are intricate in
terms of constraints. In other words, the solutions have to
be constructed and improved in an implicit way, forced
by the objective function, integrality constraints and
the dependence between the constraints. It is therefore
difficult to utilize meta-heuristic methods to solve this
kind of models. Systematic branch-and-bound search, as
implemented in commercial MIP solvers, will be relied
upon.

III. DECOMPOSITION

While the MIP model links all decisions in a unified
framework which provides a gold standard in terms
of solution optimality, it is difficult to solve even for
commercial solvers, due to the large search space and
the lack of exploitable structure in the objective function.
The solution times for several MIP instances are listed
in Table V under column “v” (for vanilla). Therefore the
MIP model cannot be used directly in practice. More effi-
cient methods need to be devised. To do so, we approach
the solution from a human dispatcher’s perspective while
making reasoning and algorithmic design.

A human dispatcher would approach the problem by
breaking it into a series of simpler tasks: assigning vehi-
cles to landing depots, arbitrating the landing sequence
of vehicles assigned to the same depot, and determining
non-intersection trajectories.

A. Vehicle-Depot Assignment by Distance

A straightforward method for vehicle-depot assign-
ment is to direct each drone to fly to and land at the
nearest depot, i.e., assignment by distance. In solving the
problem, we can first calculate the distance from a vehi-
cle’s current (starting) position to each depot and assign
the vehicle to the nearest depot. The assignment allows us
to fix zAvd to 1 for the assigned (v, d) pairs. This method is
intuitive and can speed up the solution of the MIP model.
However, a major problem with this method is that if



SUBMITTED TO IEEE TRANS. ON INTELLIGENT TRANSPORTATION SYSTEMS, APRIL 1, 2020 6

the fleet is not evenly distributed, assignment by distance
may not be the optimal solution. Furthermore, computing
time for trajectory deconfliction for highly congested
traffic (as would result from suboptimal vehicle-depot
assignment) is significantly higher than that for a milder
situation.

B. Vehicle-Depot Assignment by Congestion

While distance is reasonably the main consideration
for vehicle-depot assignment, adjustments must be made
by considering different depots’ expected congestion
levels. To overcome the limitation of vehicle-depot as-
signment by only considering distance, we propose the
following optimization-based adjustment methods. Here
and onward, we assume that vehicles that are in the same
altitude layer have the same maximum speed, i.e., Rv is
the same for all v ∈ V .

Depot assignment will affect the total landing time
in two aspects: the congestion-free travel time and the
congestion time. The essence of congestion is that the
most efficient passage of a vehicle is blocked by another
vehicle due to collision avoidance constraints. To approx-
imate the actual travel time to depot d, we separate the
assignment model into two parts: congestion-free travel
time, denoted by TDd , and time incurred by congestion,
denoted by TCd . The former is simply the time distance
to the assigned destination on the ground, that is, for
each depot d ∈ D,

TDd =
∑
v∈V

zAvd(D
τ
vd + l) (31)

where Dτ
vd is the (possibly fractional) time distance

between vehicle v and depot d. The latter is the number
of time periods blocked by other vehicles assigned to the
same depot. The objective of the assignment (zAvd) is to
minimize the sum of the two parts over all drones, that
is,

Minimize
∑
d∈D

(TDd + TCd ) (32)

The measurement bases of TDd and TCd are both time
units.

In order to obtain a simple yet accurate approximation
for TCd , we first divide the space around each depot into
N sections. Each section is a ring-shaped area of width
Rv centered at the depot (see Figure 5), thus corresponds
to one unit of time distance. Let n be the sequence
number of each section and N = {1, 2, . . . , N} be
the index set of space sections around a depot. We can
then map the starting location of each vehicle in terms of
which space section it is in with respect to each depot.
Specifically, we define the binary parameter Zvdn = 1
if vehicle v is in the n-th section of depot d, and 0
otherwise.

OO

AA

BB1
2

3
4

Fig. 3: Illustration of the division of space into circular
sections.

x

y

OO

TT

UU

VV

BB AA

Fig. 4: Calculation of a vehicle’s section number based
on the approximating octagons.

How shall we determine which section a vehicle is
in with respect to a given depot, i.e., the value of Zvdn?
Since we use an equilateral polygon to bound the velocity
directions in routing, i.e., equation (4), the farthest points
that a vehicle can reach in one unit of time are the
vertices of the polygon. This is illustrated in Figure 3.
Note that the use of 8-sided polygons (octagons) here
is for illustration clarity, whereas in actual computing
we adopted 16-sided polygons to better approximate the
circular area. Centered at point O, space is divided into
n concentric octagons by head-way time. For instance, a
vehicle in the 4-th section would need four units of time
to reach O. The route from A to O can be the green
line or the red line, and the route from B to O can be
the dark green horizontal line. Despite the differences
in travel distance, the three routes would all take four
time periods. We derive the method of calculating the
section number by use of Figure 4. In the figure, m is
the number of sides of the polygon, V marks the vehicle
position, and O marks the depot location at (0, 0). Let
Dτ
vd denote the fractional time distance from vehicle v
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Assignment strategy outline

• Idea: combine the effects of distance and congestion

– Convert geometric distance to time distance by normalizing speed

– Quantify the congestion effect in terms of time delay

• Caused for drones in the same section

• Caused for drones in subsequent sections (propagation effect)

Fleet distribution

Geometric 
distribution

H

H
1 2 3 4 5

Vehicles being 
responsible for 
congestion

H

Time-scale 
distribution

Time distance-
wrap distribution

Fig. 5: Mapping 2D vehicle locations into a 1D depot-
centered model.

x

y

RRvvbb

aa

OO
V1V1

V2V2

KK

Fig. 6: Illustration for the derivation of equation (34).

to depot d, then

Dτ
vd = Dvd(cos∠V OA+ sin∠V OA tan θ) (33)

where Dvd =
√

(OXv −QXd )2 + (OYv −QYd )2/Rv ,
∠V OA = |mod(arctan(OYv /O

X
v ), 2θ|, and θ = π/m.

The number n of the section where V is located is given
by n = DT

vd := dDτ
vde, where DT

vd is defined to be
the integer time distance from vehicle v to depot d. The
quantity DT

vd will be useful for generating variable fixing
constraints in the computational enhancement stage. In
Figure 4, OV = Dvd, OA = Dτ

vd, OU = DT
vd.

Given any two vehicles ready to land in succession
at a depot d, we define the terminal delay time s as
the shortest possible time gap between the landing start
times of the two vehicles. It is the bottleneck of the
whole landing process at the depot, and is affected by
two factors: the landing time l of the first vehicle and the
time buffer between the two vehicles due to separation
constraints. We will derive an analytical formula using a
typical scenario as illustrated in Figure 6. Two vehicles,
V 1 and V 2, are ready to land at depot O one after
another. V 1 is one time distance (geometric distance is

the maximum speed Rv , which is assumed to be the
same value for all v) away from O so it lands first. V 1
will start to land in one unit of time, and V 2 will start
to land in DT

v2,d units of time. Let s′ be the time it
takes for V 2 to fly to O after V 1 starts to land, then
DT
v2,d = s′+ 1. Tight separation constraints would make

a + b + Rv = 2hRv , as labeled in the figure, hence
Dv2,d =

√
a2 + b2/Rv . Because the goal is minimizing

the time to reach O, i.e., s′, the best terminal-stage
spatial arrangement for the two vehicles is for a = b, or
∠V 2OK = π/4. This is repeatedly observed when the
problem is solved using the MIP model. Under this ar-
rangement, we have DT

v2,d = s′ + 1 =
⌈√

2(2h− 1)/2
⌉
,

and thus s′ =
⌈√

2(2h− 1)/2
⌉
−1. Finally, the terminal

delay time s is the greater one of l and s′, that is,

s = max
(
l,
⌈√

2(2h− 1)/2
⌉
− 1
)

(34)

It is worth noting that when l� h the corridor capacity
will be the dominating bottleneck, in which case the
airspace congestion plays a minor role, e.g., vehicles
will have more “free” time to move around and line
up. In this case, the optimal vehicle-depot assignment
would approach a balance by number, that is, each
depot receives the same number of vehicles. On the
other hand, when h � l the problem will approach a
pure motion planning problem as studied in [21], and
depot assignment can be more suitably investigated by
other means of congestion prediction. In this paper, we
consider scenarios where l and h are comparable, e.g.,
experiments are conducted for cases with l = h, with the
headway time h taking values 1, 2 and 3. These settings
can cover most of the practical and difficult cases.

Applying these calculations to each vehicle-depot
combination, we can map the 2D geometric distribution
of vehicles into a 1D model, as illustrated in Figure 5.
In the figure, the depot corridor capacity is one, that
is, only one vehicle can be landing at a time. If there
is at most one vehicle in each section there will not
be any congestion, i.e., TCd = 0, because all vehicles
can advance to the depot synchronously. When some of
the sections have more than one vehicle, congestion will
ensue. There are two causes for vehicles to experience
congestion when assigned to a depot d: congestion due
to vehicles in the same sections (denoted by Sd) and
congestion due to vehicles in preceding sections (denoted
by Pd). Then we have

TCd = Pd + Sd, ∀d ∈ D (35)

Let variable Cdn denote the number of vehicles assigned
to depot d which are in the depot’s n-th section, and
variable Kdn denote the number of congestion-inducing
vehicles assigned to depot d which are in the depot’s n-
th section. Under the assumption that the depot landing
capacity is one (i.e., QCd = 1), each section can have
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at most one vehicle that is not congestion-inducing. For
each d ∈ D and n ∈ N we have,

Cdn =
∑
v

ZvdnZ
A
vd (36)

Kdn = max(Cdn − 1, 0) (37)

In the minimization problem as (32), we can express
equation (37) as

Kdn ≥ Cdn − 1 (38)
Kdn ≥ 0 (39)

We can calculate the congestion due to vehicles in the
same sections as the summation of the waiting time of
each vehicle in the section, as illustrated in Figure 5.
Then we have

Sd =
∑
n∈N

(Kdn + 1)Kdn

2
s (40)

We introduce a multiplier Φd,n to denote the units of
time delays contributed by vehicles in all preceding
sections with respect to section n. For instance, in Figure
5, for the first section we have Φd,1 = 0, and for
each subsequent section, the congestion due to preceding
sections depends on the number of vehicles in all of those
sections. For n > 1, similar to equation (37), we have

Φd,n ≥ Φd,n−1 + Cd,n−1s− 1, n > 1 (41)
Φd,n ≥ 0 (42)

Therefore, we have

Pd =
∑
n∈N

Cd,nΦd,n (43)

Let us walk through an example in Figure 5 with
h = 2: The traffic scene show that Cdn = 3, 0, 2, 0
and 4, respectively for n = 1, ..., 5 and Kdn = 2, 0, 1, 0
and 3, respectively for n = 1, ..., 5. Applying (41) in
a minimization setting, we have Φd,2 = 5, Φd,3 = 4,
Φd,4 = 7 and Φd,5 = 6. The meaning for Φd,3 = 4, for
instance, is that each vehicle in section 3 will experience
4 units of time delays due to vehicles in preceding
sections.

The vehicle-depot assignment optimization problem is
therefore given by the objective (32), and constraints (5),
(31), (35) - (36) and (38) - (43). It is a mix-integer
nonlinear programming (MINLP) model. For its limited
size, the model can be solved by a commercial off-the-
shelf solver quite quickly.

IV. COMPUTATIONAL ENHANCEMENTS

Once the vehicle-depot assignment is made, the rout-
ing problem can be decomposed by depot, and the depot-
specific problem can be solved in parallel. Furthermore,
using the aforementioned assignment model, we can also

approximate the total landing time of each vehicle. For
vehicles assigned to the same depot, we set their landing
sequence by distance - vehicles in inner sections land
first, and for vehicles in the same section, vehicles that
are closer to the depot (i.e., smaller Dτ

vd) land first.
Suppose that vehicle v is assigned to depot d′ and it is
located in the depot’s n′-th section, then the total landing
time TLv for vehicle v can be approximated by

TLv = DT
vd′ + l + CNvd′n′s+ Φd′,n′ (44)

where CNvd′n′ is the sequence number of vehicle v in
section n′, determined based on Dτ

vd′ . For instance, if
there are 3 vehicles in the n′-th section of depot d′

and vehicle v has the smallest Dτ
vd′ value among the

three, then CNvd′n′ = 1. Note that we used DT
vd′ , the

integer version of Dτ
vd′ , in equation (44) to match the

integer time units used in the MIP model. Because the
assignment model has been solved at this step, d′ and
n′ for the given vehicle are known. Thus, we can fix
several variables in the original MIP model to shrunken
the search space and speed up the MIP solution time.
The variable fixing heuristic for vehicle v is as follows.

zDECvd′t = 0, ∀t : t ≤ TLv − l (45)

zACTv1t = 1, ∀t : t < TLv − l (46)

zACTv2t = 1, t = TLv (47)

zACTv3t = 1, ∀t : t > TLv (48)

xDDvt ≤ Rv(n− l + 1), ∀(n, t) : n > l, t+ n = TLv
(49)

yDDvt ≤ Rv(n− l + 1), ∀(n, t) : n > l, t+ n = TLv
(50)

In practice, the actual total landing time may be different
from TLv by a small margin. In all experiments, we
observed that the variation is less than 2 time units. In
case of MIP infeasibility due to over fixing, relaxing the
fixing rule by a few time units will solve the problem
while preserving the solution speed advantage.

V. NUMERICAL EXPERIMENTS

In this section, we perform three sets of experiments
to demonstrate (1) the advantage and properties of the
congestion-based assignment model, (2) the computa-
tional efficiency of the overall solution strategy as well
as the efficiency gain by each enhancement step, and (3)
the efficacy of the overall landing model and algorithm
in a practical setting.

A. Computing Environment and Parameter Setting

All experiments were performed on a Dell Precision
Tower 3420 with an Intel(R) Core(TM) i7-7700 CPU @
3.60 GHz, 16.0 GB RAM and Windows 10 Enterprise
Operating System. We used GAMS 30.1.0 for modeling,
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Fig. 7: Experimental scenario for comparing different
assignment methods.

SCIP solver for solving the MINLP model (the vehicle-
depot assignment model), and GUROBI 9 for solving
the MIP model (the original model as well as different
variants with the computation enhancements). Default
solver options were adopted. In all experiments, we set
l equal to h, used 16-sided polygons (see Figure 2)
to approximate the velocity range, and used the time
horizon T = {1, . . . , 80}.

B. Effects of Congestion-based Assignment Model

To demonstrate the effects of congestion on optimal
vehicle-depot assignment, we created an artificial case
with two depots and 16 vehicles with uneven locational
distribution, as shown in Figure 7.

All vehicles’ starting locations were closer to depot
1 than to depot 2, which means they would all be
assigned to depot 1 if the assignment were based on
distance. Such a distance-based assignment would result
in a total airborne time of 648, whereas the congestion-
based assignment, which agrees with the optimal assign-
ment obtained from solving the original MIP, gives a
much smaller total airborne time of 568. More detailed
comparisons are summarized in Table III. We can see
that the congestion-based assignment method yielded
a more balanced assignment and a smaller objective
value for (32). Moreover, the overall solution time using
the Congestion-based method is 7.7 s, less than half
of the solution time using the Distance-based method.
This indicate that a balanced assignment has implicit
computational benefits. This point will be demonstrated
fully in the next set of computational experiments.

C. Computational Comparison of Solution Methods

In this set of experiments, vehicles are randomly
scattered in a 1000 × 1000 area with a feasible starting

TABLE III: Comparison of Vehicle-Depot Assignment
Methods

Distance-based Method

Pd Sd TD
d

∑
v TL

v Airborne

Depot 1 136 168 334.2
648 648

Depot 2 0 0 0

Congestion-based Method

Pd Sd TD
d

∑
v TL

v Airborne

Depot 1 55 75 226.5
568 568

Depot 2 3 3 197.1Time: 1
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Fig. 8: A random case with (D,V,H) = (4, 20, 3) and
optimal depot assignment.

position, i.e., separation constraints are all satisfied in
the beginning. In 2-depot scenarios, depots are located
at (250, 500) and (750, 500). In 4-depot scenarios, de-
pot locations are (250, 250), (250, 750), (750, 250) and
(750, 750). All vehicles’ maximum speeds are set to
10 per unit time. In the experiments, we test different
numbers of depots (D), numbers of vehicles (V ), and
separation (headway) time radii (H). For simplicity, we
set the vertical landing time equal to headway time in all
scenarios. For each parameter combination, 10 random
cases are generated. A case with (D,V,H) = (4, 20, 3)
and the optimal vehicle-depot assignment is illustrated
in Figure 8. In this particular case, V13 is closer to
depot 3 while the optimal assignment is assigning it to
depot 4, corroborating the deficiency of distance-based
assignment method.

We experimented five different solution procedures:
(1) Solve the original MIP (vanilla); (2) Pre-assign
vehicles to depots by the congestion-based assignment
method, and then solve the MIP (vp); (3) Pre-assign
based on congestion, then decompose the MIP by depot
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TABLE IV: Average Optimality Gaps by Case and
Method.

D V H v vp vpp vppd vppa

2 10 1 0.0 0.0 0.0 0.0 0.0
2 10 2 0.0 0.0 0.0 0.1 0.0
2 10 3 0.0 0.0 0.0 0.7 0.0
2 20 1 0.0 0.0 0.0 0.0 0.0
2 20 2 0.0 0.0 0.0 1.4 0.0
2 20 3 2.4 2.2 2.2 7.5 2.3
4 10 1 0.0 0.1 0.1 0.1 0.1
4 10 2 0.0 0.0 0.0 0.0 0.0
4 10 3 0.0 0.1 0.1 0.1 0.1
4 20 1 0.0 0.0 0.0 0.0 0.0
4 20 2 0.0 0.0 0.0 1.1 0.0
4 20 3 0.0 0.0 0.0 2.5 0.0

TABLE V: Average Solution Time by Case and Method.

D V H v vp vpp vppd vppa

2 10 1 15.7 14.6 9.3 8.4 3.0
2 10 2 38.7 32.8 11.0 10.1 2.4
2 10 3 73.3 45.1 16.6 25.1 3.3
2 20 1 498.5 176.4 35.2 33.9 4.3
2 20 2 623.6 551.9 78.6 84.6 4.2
2 20 3 4508.0 3224.6 895.8 2185.0 43.5
4 10 1 13.1 11.0 4.3 2.9 3.2
4 10 2 23.1 21.1 4.6 3.1 2.6
4 10 3 25.6 25.9 7.3 4.9 3.8
4 20 1 178.9 58.5 8.8 5.5 4.0
4 20 2 675.4 387.3 29.1 36.3 3.0
4 20 3 1762.0 838.9 53.0 111.5 3.3

and solve separately in parallel (vpp); (4) Pre-assign
based on distance, then solve for different depots in
parallel (vppd); (5) Pre-assign based on congestion, fix
variables by (45) to (50), then solve for different depots
in parallel (vppa). For each run, the solver time limit
was set to 7200 seconds, and the actual solution time (if
completed in time) or the optimality gaps (if time limit
was reached) were recorded. Note that the optimality gap
of the vanilla (v) method is simply the gap reported by
the solver, and the optimality gap of all other methods
are calculated by taking the relative gap between the
objective value and the optimal objective value obtained
by the vanilla method. In other words, the original MIP
solution serves as the gold standard for the solution
quality of other enhanced (but heuristic) methods.

Table IV lists the average optimality gaps. In the cases
of (D,V,H) = (2, 20, 3), the vanilla method reached
the time limit in 4 of the 10 cases, which explains the
nonzero average optimality gap. We can see that vp,
vpp and vppa methods resulted in similar gaps, while
the vppd method resulted in much larger gaps due to
the suboptimal assignments made by the distance-based
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Fig. 9: Comparison of solution time of different methods.

method. Given that the cases are generated randomly, it
is quite convincing that the congestion-based assignment
method (the MINLP model) prevails and is generally
helpful.

Table V lists the average solution time in seconds and
Figure 9 exhibits the comparisons in plots. In the figure,
the ratio noted in each subplot (e.g., 22x in the top right
subplot) is the ratio of vppa to v in solution time, i.e.,
how many folds of efficiency increase was achieved by
the final method vppa. The blue dashed lines outline
the 95% confidence interval of nominal solution times
for different case and method combinations. We can see
that the solution time for vppd is generally greater than
vppa, and even greater than vpp in some cases. This
is because under the distance-based assignment method
(vppd), some depot was overly congested thus difficult to
solve. After all, in parallel computing mode, the overall
solution time depends on the solution time of the hardest
depot. Thus the reduction in solution time is another
implicit benefit of using congestion-based assignment
method. Notably, vppa exhibits robust performance in all
cases with small variances in solution time. Except for
extremely difficult case group of (D,V,H) = (2, 20, 3),
the vppa method was able to solve each of the other 110
cases in 6 seconds. Therefore, it is suitable for practical
use.
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D. Simulation in Real Flight Platforms

To demonstrate the practical use of the proposed
modes and algorithms (vppa), we implemented the vppa
method in a simulation framework built on a real fleet
platform consisting of Pixhawk-based quadcopter drones
with ArduPilot flight control software. Here, we config-
ured a test flight scenario at the UAS test center located
at the Alpena County Regional Airport (KAPN), Alpena,
Michigan. The fleet landing procedure discussed in this
paper was tested as a safety feature in the presumable
context of other fleet flight tests. In an area of 4 square
kilometers (shown in Figure 10, we tested a fleet of
18 software-in-the-loop (SITL) drones with three pre-
specified emergency landing locations (depots). To be on
the safe side, we limited each depot’s concurrent landing
capacity (QCd ) to 1. Other model parameters were set as
follows: the distance unit used in the model was meter
(m), the time interval in the model correspondeds to 10
seconds (s) of clock time, a planning horizon of 80 time
intervals (800 s) was used, the vertical landing time was
l = 1 (10 s), the headway time h was set to 1 (10 s),
the maximum speed of each drone was set to 100 (10
m/s), and the navigation commands were sent to drones
every 18 s, so that the drones had abundant time to reach
the intended waypoints (xvt and yvt coordinates) even if
communication latency and motion uncertainty had been
present.

The simulation was conducted as follows. First, the
whole fleet was commanded to take off to 22 meters
above ground level (AGL) and perform normal flight
operations. Then, an airspace emergency was presumably
declared which required all drones to land as soon as
possible. At this point, a “brake” command was sent to
all drones to brake all ongoing movements. The drones
will hover still while waiting for further navigation com-
mands. In the meantime, the fleet landing optimizer was
started. It took the optimizer (vppa method) 4.7 seconds
to complete all the computations, which generated step-
by-step waypoint sequences for the whole fleet. Then a
waypoint command was sent to each drone every 18 s
to guide the landing maneuver. The process completed
as intended without a problem. All drones successfully
landed within 3 minutes and 14 seconds, while sufficient
separation was maintained at all times. A link to the
software App and a video demo will be available upon
request.

VI. CONCLUSION

In this paper, we studied the new problem of effi-
ciently landing a fleet of drones at a limited number of
highly capacitated vertiports. This problem represents an
important aspect of future UTM developments, as well
as a unique extension to conventional vehicle routing
problems. We proposed a comprehensive MIP model to

Fig. 10: Locations of 18 drones and 3 landing depots in
the testing scenario.

describe relevant operational constraints, and conducted
theoretical analysis to justify all-time separation bounds
used in the linearized collision avoidance constraints.
To solve realistic cases efficiently without sacrificing
optimality, we proposed a congestion-based assignment
model, a decomposition and parallel computing scheme,
and problem-specific variable fixing strategies. These
computational improvements have been thoroughly val-
idated by a large number of numerical cases. Exper-
imental results suggested that the proposed algorithm
was able to reduce computing time by a factor of more
than 500x compared to solving the original MIP using
commercial solvers. The models and algorithms have
also been implemented in a prototype fleet management
software and has been proven useful in practice. Further
research could focus on incorporating environmental un-
certainty, handling external static and moving obstacles,
and communicating with exogenous fleets through the
UTM architecture.
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